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Deep Learning for Channel Tracking in
IRS-Assisted UAV Communication Systems

Jiadong Yu, Xiaolan Liu, Yue Gao, Chiya Zhang, Wei Zhang

Abstract—To boost the performance of wireless communica-
tion networks, unmanned aerial vehicles (UAVs) aided communi-
cations have drawn dramatically attention due to their flexibility
in establishing the line of sight (LoS) communications. However,
with the blockage in the complex urban environment, and due to
the movement of UAVs and mobile users, the directional paths
can be occasionally blocked by trees and high-rise buildings.
Intelligent reflection surfaces (IRSs) that can reflect signals
to generate virtual LoS paths are capable of providing stable
communications and serving wider coverage. This is the first
paper that exploits a three-dimensional geometry dynamic chan-
nel model in IRS-assisted UAV-enabled communication system.
Moreover, we develop a novel deep learning based channel
tracking algorithm consisting of two modules: channel pre-
estimation and channel tracking. A deep neural network with
off-line training is designed for denoising in the pre-estimation
module. Moreover, for channel tracking, a stacked bi-directional
long short term memory (Stacked Bi-LSTM) is developed based
on a framework that can trace back historical time sequence
together with bidirectional structure over multiple stacked lay-
ers. Simulations have shown that the proposed channel tracking
algorithm requires fewer epochs to convergence compared to
benchmark algorithms. It also demonstrates that the proposed
algorithm is superior to different benchmarks with small pilot
overheads and comparable computation complexity.

Index Terms—Channel Tracking, Deep Learning (DL), In-
telligent Reflection Surfaces (IRS), Long Short Term Memory
(LSTM), Unmanned Aerial Vehicles (UAV).

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) acting as aerial base
stations can provide a solution on serving wider coverage,
supporting reliable connections, and providing energy efficient
communications [1], [2]. The flexibility of UAVs has led
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to plenty of applications such as security surveillance, real-
time monitoring, rescue, and emergency communications [3].
Although UAV-aided systems are considered as promising
techniques for future wireless communications for smart city,
the complex urban environment poses potential blockage
problem on LoS links between navigation UAVs and ground
users [4]. IRSs that can construct virtual LoS paths to enhance
the quality and coverage of wireless propagation has become
an invaluable solution on overcoming signal pathloss and
on securing communications [5], [6]. This is because that
the low-cost IRS can intelligently adjust its phase shifts to
steer signal power towards targeted directions and reduce
information leakage. Thus, to address the blockage problem in
UAV-aided system, intelligent reflection surfaces (IRSs) can
be installed to assist the UAV to offer ubiquitous communi-
cation services [4], [7]–[9]. Additionally, deploying IRSs in
the UAV-aided system can further help with the time- and
energy- consuming problem caused by UAV navigation when
some users are far away [7]. Therefore, with the appealing
advantages of UAV and IRS, deploying both of them in the
wireless system can dramatically boost the communication
performance.

Moreover, to achieve high quality communications, it is
indispensable to acquire accurate channel state information
(CSI) for effective transmissions. Compared to the CSI esti-
mation in the conventional communication systems, channel
tracking in IRS-assisted UAV systems are more challenging
in a time-varying environment with small overheads. Since
IRS is unable to perform signal processing, the large number
of reflecting elements of IRS, and the mobility of UAV and
users all leads to high complexity.

A. Related Work

For future wireless communications, the widely studied
challenge is to achieve ultra-reliable and high-capacity wire-
less communications in a time-varying environment. A lot
of efforts have been focused on designing efficient cod-
ing and modulation schemes and on implementing power
and beamforming control. However, these studies ignore the
wireless channel between the communication ends. Thus,
emerging technologies such as UAV-assisted and IRS-aided
communications have received extensive attention in recent
years [10].

Compared to the terrestrial base stations, the UAV-based
aerial base stations’ advantage is the adjustable altitude and
mobility. This flexibility enables UAVs to play a vital role
in wireless communications. Particularly, UAVs can assit the
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communication devices such as sensors and monitors that are
unable to transmit over a long distance due to the energy
constraints [11]. Although the existing statistical MIMO chan-
nel models are suitable for most communication environment,
the unique features, such as the three-dimensional (3D) space
movement of UAVs at high altitude can not be captured
[12]. Hence, recent work [12]–[15] proposed geometry-based
UAV channel models for air-to-ground communication envi-
ronment. The first work that considered the UAV’s mobility
from the moving velocities to directions in the vertical plane
is reported in [12]. Moreover, authors in [13]–[15] derived
the time-varying parameters of the angles of arrival (AoAs)
and departure (AoDs) to describe the nonstationarity of the
dynamic channel caused by the movement of the UAV. Dif-
ferently, authors in [13] ignored the scatterers’ movement and
contained a LoS link and only one non-LoS link. Authors in
[14] investigated the cluster-based multiple propagation paths.
Besides, the initial azimuth and elevation AoAs and AoDs
were further considered in [15].

Apart from UAVs aided communications that can provide
effective communication services, the deployment of IRSs in
wireless communications has attracted remarkable attention
[16]. The IRS that consists of an array of reflecting elements
with low cost and low energy consumption, can be installed
in building facades, ceilings, indoor walls, road signs, as well
as pedestrians’ wearable devices [17]. By re-configuring the
phase shifts of elements on the IRS, the reflected signals
can be propagated. They can form virtual LoS links between
mobile users and base stations with enhanced transmission
signal power [18], [19]. Also, an IRS-aided system can
improve spectral efficiency and enhance the communication
coverage capability [20]. However, the promised communica-
tion performance brought by an IRS relies on good knowledge
of CSI. Hence, obtaining accurate CSI with low complexity
channel estimation and tracking approaches is indispensable
and more challenging for practical IRS implementation [17].

Recently, channel estimation in IRS-assisted systems has
been widely studied based on both conventional [21]–[25]
and specific [26], [27] communication scenarios. For con-
ventional scenarios, [21] proposed a three-phase pilot-based
channel estimation framework for IRS-assisted MU commu-
nications, in which different links are estimated in different
phases, separately. The authors in [22] developed two cus-
tomized schemes, simultaneous-user channel estimation and
sequential-user channel estimation, by separately considering
different dominant links in the real-world scenario. Moreover,
[23]–[25] all considered the conventional scenario but with
part of the reflecting elements switched on in IRS. For some
specific communication scenarios, [26] considered an indoor
IRS-assisted channel model which assumed that the LoS path
being blocked by the obstacles and the virtual LoS path
reflected by IRSs as the major link. Double-IRS cooperatively
aided MIMO system that has cascaded single-reflection and
double-reflection links have been further exploited in [27].

Data-driven deep learning (DL) techniques have shown
remarkable effectiveness to revolutionize communication sys-
tems [17]. In contrast to the traditional model driven channel
estimation approaches, DL with powerful learning capabilities

can be adopted for estimating the CSI that has beyond linear
correlations in emerging advanced communication environ-
ment [28]–[32]. A deep residual learning method for channel
estimation in IRS-assisted multi-user communications by con-
sidering the channel model with both LoS links and virtual
LoS links is proposed in [28]. The authors in [29] proposed
a learned denoising-based approximate message passing net-
work to learn the channel structure for beamspace mmWave
massive MIMO systems. Similarly, a deep denoising neural
network-assisted CS channel estimation framework for IRS
systems with reduced training overheads has been proposed
in [30]. Moreover, authors of [31] developed a DL-based
solution that enables IRS to learn to interact with the signal
optimally. [32] proposed a twin convolutional neural network
(CNN) architecture to estimate both LoS and cascaded non-
LoS paths in IRS-assisted MIMO systems.

In the aforementioned work [21]–[32], the environment
and the mobile users are assumed to be static for simplicity
for channel estimation in an IRS-assisted communication
system. However, in practice, the mobility of the environment
cannot be ignored. Hence, time-varying channel estimation
or channel tracking is a potential research topic but full of
challenge. Furthermore, the proposed DL channel estimation
techniques in [28]–[32] simply considered off-line training.
None of the mentioned work considered the time-sequence of
historical information for channel tracking.

B. Motivation and Contribution
Although UAVs can be flexibly adjusted to create a reliable

communication environment by establishing LoS links and
shortening the communication distances, it’s inevitable that
communication channels can still be occasionally blocked
by obstacles, such as trees and high-rise buildings. The new
technique called IRS-assisted UAV communication has been
brought increasing attention [4], [33]–[35]. For example, [4]
jointly designed the UAV trajectory and IRS beamforming to
optimize the system average achievable rate. [33] investigated
the fair secrecy energy efficiency in the system where mobile
UAV relay equipped with an IRS. In [34], the IRS-assisted
UAV relaying system is studied, where the IRS is employed
on the building to assist the communication between the
device and the UAV. Similarly, [35] considered the system that
facilitates a UAV relay and an IRS. Then the UAV positioning,
IRS passive beamforming were jointly optimized by mini-
mizing the decoding error rate. However, all these mentioned
works assume that the CSI is known in advance. Hence, it
is crucial to design a reliable channel tracking scheme in
IRS-assisted UAV communications systems. There are mainly
three challenges to tackle: good estimation performance, the
small pilot overheads, and the time-varying channel caused
by the mobility of both UAV and mobile users.

Motivated by the aforementioned literature review, we pro-
pose a DL-based channel tracking algorithm in IRS-assisted
UAV-enabled communication systems with lower training
overheads and significantly improved tracking performance.
The main contributions are summarized as follows:

• From our knowledge, this is the first work that develops
a 3D geometry-based dynamic channel model in IRS-
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assisted UAV-enabled communication system with fixed
IRS, navigation UAV, and mobile users. We define the
time-variant channel model consisting of both dynamic
LoS link (user-UAV) with blockage parameter and dy-
namic cascaded virtual LoS link (user-IRS-UAV) with
activation parameter. The velocities, the max Doppler
effects, the propagation delays and the time delays are
specially included in the system model.

• We propose a DL-based channel tracking mechanism to
track the time-varying channel in the developed system.
The proposed algorithm consists of two modules: channel
pre-estimation and channel tracking. The pre-estimation
is achieved by using a deep neural network (DNN)
to perform off-line training on pre-collected training
dataset. The tracking module is designed as a stacked bi-
directional long short term memory (Stacked Bi-LSTM)
that can track the CSI over a time-varying channel in
a data-driven manner. The Stacked Bi-LSTM is con-
structed by a framework that involves a certain historical
trace-back period in the time sequence and bidirectional
structure over multiple stacked layers.

• In comparison with the benchmark algorithms, the pro-
posed channel tracking algorithm requires less epochs
for the convergence of the loss function during the off-
line training phase. Moreover, simulations demonstrate
that the proposed scheme (DNN followed by Stacked Bi-
LSTM) shows better channel tracking performance with
smaller pilot overheads than the benchmark algorithms,
and it has comparable complexity.

This paper is structured as follows. The IRS-assisted UAV-
enabled wireless communication system is introduced in Sec-
tion II. In Section III, a DL-based channel tracking algorithm
is proposed. Then, the proposed channel tracking performance
over a time-variant channel is quantified in Section IV.
Finally, conclusions are drawn in Section V.

Notation: Throughout the paper, we use the following
common notation. The complex numbers are denoted by C.
The transpose and the conjugate transpose are denoted by
(·)T, (·)H respectively. I is the identity matrix. CN (mean,
covariance) indicates a complex Gaussian random vector with
defined mean and covariance. tr(·) indicates the trace of the
matrix. A⊗B denotes the Kronecker product. A⊕B denotes
the direct sum. E[·] is used to denote expectation. ∥ · ∥ is the
l2 norm.

II. SYSTEM MODEL

This paper considers the uplink IRS-assisted UAV-enabled
multi-user system, which consists of M element antenna array
equipped on UAV and N reflecting elements installed on IRS
serving K users. The kth user is assumed to be equipped
with a single antenna. To enhance the quality of wireless
communication services between UAV and mobile users, IRS
is considered to be placed at the high-rise building to provide
extended coverage and enables less movement of UAV [36],
[37].

As shown in Fig. 1 (a), there are mainly two different kinds
of links in the system: the user-UAV LoS link and the user-
IRS-UAV virtual LoS link. The kth user-UAV LoS link at time

t is represented by dk(t) ∈ CM×1. The kth user-IRS-UAV
virtual LoS link at time t is consisted of two LoS sub-links:
the user-IRS sub-link uk(t) ∈ CN×1 and the IRS-UAV sub-
link G(t) ∈ CM×N . The illustration details of the dynamic
3D IRS-assisted channel model is presented in Fig. 1 (b). The
moving speed of UAV and kth user are represented by vU and
vk.

The LoS link between kth user and UAV at time t is
dk(t) = [dk,m(t, τ)]M×1 [13], [15] with

dk,m(t, τ) = Ωk,me
−j2πfcτk,mδ(τ − τU,k,LoS)

ej2πfkt[cos(αU,k−γk,α)cosβU,kcosγk,β+sinβU,ksinγk,β ]

ej2πfUt[cos(αU,k−γU,α)cosβU,k],

(1)

where Ωk,m is the attenuation factor between the mth (0 ⩽
m ⩽ m

′
⩽M )1 antenna element on UAV and the single an-

tenna on kth user, fc is the carrier frequency, τk,m = Lk,m/c
is the propagation delay of the waves between the mth antenna
element on UAV and single antenna on kth user at time t with
Lk,m as the distance between user and mth antenna element,
τU,k,LoS is the time delay of this kth user-UAV LoS link at
time t, fU = vU

λ and fk = vk
λ are the maximum Doppler

frequency caused by the movement of both UAV and kth user,
αU,k and βU,k are the azimuth and elevation angle between
the kth user and UAV, γU,α and γU,β are the azimuth and
elevation angle of the UAV’s moving direction, γk,α is the
azimuth angle of the kth user’s moving direction associate
with the UAV location. The time delay of this LoS link is

τU,k,LoS =
Dk

c0cosβU,k
, (2)

with Dk as the xy-plane antenna center distance between UAV
and kth user, c0 as light speed.

Note that, for vitual LoS link, the main difference between
dk,m(t, τ) in (1) and each LoS sub-link is that the IRS is
installed at a fixed place without moving at all i.e., fS = 0.
Hence, the kth user-IRS LoS sub-link at time t is uk(t) =
[uk,n(t, τ)]N×1 with

uk,n (t, τ) = Ωk,ne
−j2πfcτk,nδ (τ − τS,k,LoS)

ej2πfkt[cos(αS,k−γk,α)cosβS,k],
(3)

where Ωk,n is the attenuation factor between the nth (0 ⩽ n ⩽
n

′
⩽ N ) reflecting element on IRS and the single antenna

on kth user, τS,k,LoS is the time delay of this kth user-IRS
LoS sub-link at time t, αS,k and βS,k are the relative azimuth
and elevation direction between kth user and IRS, γk,α is
the azimuth angle of the kth user’s moving direction, τk,n =
Lk,n/c is the propagation delay of the waves between the nth

antenna element on IRS and single antenna on kth user at time
t with Lk,n as the distance between user and nth element on
IRS.

uk,n (t, τ) = Ωk,ne
−j2πfcτk,nδ (τ − τS,k,LoS)

ej2πfkt[cos(αS,k−γk,α)cosβS,k],
(4)

1The reason of having the m
′th element presented in the illustration Fig.

1 is to show the antenna flat angle ψU. Similar to the existence of the n
′th

reflection element on IRS, the physical flat angle is represented by ψS.
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UAVIRS

Fig. 1. (a) The illustration of the IRS-assisted UAV-enabled multi-user
communication system. (b) The system model of the uplink of the IRS-
assisted UAV-enabled multi-user communication.

where Ωk,n is the attenuation factor between the nth (0 ⩽ n ⩽
n

′
⩽ N ) reflecting element on IRS and the single antenna

on kth user, τS,k,LoS is the time delay of this kth user-IRS
LoS sub-link at time t, αS,k and βS,k are the relative azimuth
and elevation direction between kth user and IRS, γk,α is
the azimuth angle of the kth user’s moving direction, τk,n =
Lk,n/c is the propagation delay of the waves between the nth

antenna element on IRS and single antenna on kth user at time
t with Lk,n as the distance between user and nth element on
IRS.

The IRS-UAV LoS sub-link at time t is Gk(t) =
[gm,n(t, τ)]M×N with

gm,n(t, τ) = Ωm,ne
−j2πfcτm,nδ(τ − τU,S,LoS)

ej2πfUt[cos(αU,S−γU,α)cosβU,ScosγU,β+sinβU,SsinγU,β ],
(5)

where Ωm,n is the attenuation factor between the mth antenna
element on UAV and the nth reflecting element on IRS,
τU,S,LoS is the time delay of this IRS-UAV LoS sub-link at
time t, αU,S and βU,S are the relative azimuth and elevation
direction between UAV and IRS, τm,n = Lm,n/c0 is the
propagation delay of the waves between the mth antenna
element on UAV and nth element on IRS with Lm,n as the
distance.

TABLE I
TABLE OF IMPORTANT SYMBOLS

Symbols Explanations
M,m,m

′
Total number and index of antenna elements of UAV

N,n, n
′

Total number and index of elements of IRS
Np Total number of training pilot
αU,k, βU,k Azimuth and elevation AoAs/AoDs of user-UAV link
αS,k, βS,k Azimuth and elevation AoAs/AoDs of user-IRS link
αU, S, βU, S Azimuth and elevation AoA/AoD of IRS-UAV link
γU,α, γU,β Azimuth and elevation angle of UAV movement
γk,α Angle of kth user movement
βt,n Amplitude at nth element of IRS at time slot t
ϕt,n Phase shift at nth element of IRS at time slot t
vU UAV movement speed
vU,xy, vU,z UAV speed’s horizontal and perpendicular components
vk Speed of kth user movement
fU Maximum Doppler frequency of UAV
fk Maximum Doppler frequency of kth user
ψU Antenna physical flat angle on UAV
ψS Reflection elements’ physical flat angle on IRS
τk,m The propagation delay of the wave between UAV mth

antenna element and kth user single antenna at time t
τk,n The propagation delay of the wave between IRS nth

reflection element and kth user single antenna at time t
τm,n The propagation delay of the wave between UAV mth

antenna element and IRS nth reflection element at time t
τU,k,LoS The time delay of kth user-UAV LoS link at time t
τS,k,LoS The time delay of kth user-IRS LoS link at time t
τU,S,LoS The time delay of IRS-UAV LoS link at time t
Dk The xy-plane center distance between UAV and kth user
DS The xy-plane center distance between IRS and UAV
DS,k The xy-plane center distance between IRS and kth user
Ωk,m Attenuation factor between the UAV mth antenna

element and the kth user single antenna
Ωk,n Attenuation factor between the IRS nth reflection

element and the kth user single antenna
Ωm,n Attenuation factor between the UAV mth antenna

element and the IRS nth reflection element
Lk,m The distance between the UAV mth antenna element

and the kth user single antenna
Lk,n The distance between the IRS nth reflection element

and the kth user single antenna
Lm,n The distance between the UAV mth antenna element

and the IRS nth reflection element

The corresponding time delay for two sub-links at time t
are

τS,k,LoS =
DS,k

c0cosβS,k
(6)

and

τU,S,LoS =
DS

c0cosβU,S
. (7)

The kth user-IRS-UAV virtual LoS link at time t can be
expressed as G(t)Φ(t)uk(t) ∈ CM×1, in which Φ(t) =
diag(φ(t)) ∈ CN×N is the phase shift matrix of IRS with
φ(t) = [βt,1e

jϕt,1 , ..., βt,ne
jϕt,n , ..., βt,Ne

jϕt,N ]T ∈ CN×1,
where βt,n ∈ [0, 1] and ϕt,n ∈ [0, 2π] are the reflection
amplitude and phase shift of the subsurface n of IRS at time
slot t [26].

Hence, the IRS-assisted UAV uplink at time t is the
superimposition of the vitual LoS link and the LoS link, which
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can be given as

Ḣk(t) = G(t)Φ(t)uk(t) + ηkdk(t)

= G(t)diag(uk(t))︸ ︷︷ ︸
HC,k(t)

φ(t) + ηkdk(t), k = 1, ...K, (8)

where HC,k(t) ∈ CM×N denotes the cascaded kth user-
IRS-UAV channel at time slot t, ηk ∈ {0, 1}M×1 is the
blockage parameter that is distributed according to a Bernoulli
distribution [38] with the blockage probabilities for LoS link
is pk.

The received signal at the UAV from K users at time slot
t can be expressed as

Y (t)
′
=

K∑
k=1

Ḣk(t)sk +N
′

k(t)

=

K∑
k=1

[HC,k(t),ηkdk(t)]︸ ︷︷ ︸
Hk(t)

[φ(t); 1]T︸ ︷︷ ︸
r(t)

sk +N
′

k(t),

(9)

where Y (t)
′ ∈ CM

′×Np is the MU received signal, Hk(t) ∈
CM×(N+1) is the channel matrix that need to be estimated,
r(t) ∈ C(N+1)×1, sk ∈ C1×Np is the training pilot with
sks

H
k = PNp and ska

skb
= 0, where P is the power

of each user, ka, kb ∈ 1, 2, ...,K, and ka ̸= kb. N
′

k(t) ∼
CN (0, σ2

N
′I) is the AWGN noise matrix.

For MU case, since the pilot sequences of each two users
are orthogonal, the received signal vectors for kth user can
be decoupled by multiplying a sequence sHk as

1

PNp
Y (t)

′
sHk︸ ︷︷ ︸

Y k(t)

= Ḣk(t) +
1

PNp
N

′

k(t)s
H
k

= [HC,k(t),ηkdk(t)]︸ ︷︷ ︸
Hk(t)

[φ(t); 1]T︸ ︷︷ ︸
r(t)

+
1

PNp
N

′

k(t)s
H
k︸ ︷︷ ︸

Nk(t)

,
(10)

where Y k(t) ∈ CM×Np is the received signal vector at the
UAV from the kth user, Hk(t) ∈ CM×(N+1) is the channel
matrix that need to be estimated, r(t) ∈ C(N+1)×1, Nk(t) ∼
CN (0, σ2

NI).
The channel Hk(t) is estimated by a channel tracker,

denoted by F(·), which depends on the received signal
Y (t)

′
, r(t), and the training pilot sk. The estimated channel

H̃k(t) = F(Y k(t); r(t), sk). Hence, the pilot-aided channel
estimation problem can be written as

min
F

E
[
∥Hk(t)− H̃k(t)∥2

]
,

s.t. tr
(
sks

H
k

)
= Es,

(11)

where Es = NpTsP is the energy constraint with Np as pilot
overheads length, Ts as the length of one time slot, and P
denotes the transmit power.

To be noticed, because of the mobility of both UAV and kth

user, the relative azimuth and elevation angle and the relative
distance are constantly changing through time. We assume
the initial position of the UAV is (xU, yU, zU) = (0, 0, HU),
kth user is (xk, yk, zk) = (Dk cosαU,k, Dk sinαU,k, 0), IRS

is (xS, yS, zS) = (DS cosαU,k, DS sinαU,k, HS). The UAV
speed vU has the moving direction γU,α and γU,β . The
user speed vk has the moving direction γk,α. Hence, the
location should be updated for tth time slot, i.e., UAV
is (0, 0, HU − vUt sin γU,β), kth user is (Dk cosαU,k +
vkt cos γk,α, Dk sinαU,k+vkt sin γk,α, 0). Hence, the updated
relative azimuth, elevation angles and distances in (1)-(7)
can be calculated based on new locations. Furthermore, we
assumed that the antenna on UAV has fixed physical flat
position angle ψU. Similarly, the reflecting surface on IRS has
fixed physical flat position angle ψS. The element distance on
both antenna and reflecting surface is ∆ = λ/2. Therefore,
the propagation delay of the waves τk,m, τk,n, τm.n can be
calculated accordingly.

By taking the relative position in Fig.1(b) as an example,
with ∆m = 1

2 (M + 1− 2m)∆ as the distance between mth

element and the center OU, and ∆n = 1
2 (N+1−2n)∆ as the

distance between nth element and the center OS, the distance
between kth user and mth element on UAV antenna Lk,m, the
distance between kth user and nth element on IRS is Lk,n,
and the distance between mth element on UAV antenna and
nth element on IRS is Lm,n are calculated as in (12), (13),
and (14).

III. PROPOSED DEEP LEARNING BASED CHANNEL
TRACKING ALGORITHM

Data-driven DL based framework is now widely designed
and employed for channel estimation [39]–[41]. This is be-
cause that DL can extract the characteristics of the complex
environment information from received signals without the
need of prior knowledge about the channel statistics [41].
Additionally, DL-based algorithms have low computational
complexity with simple operations such as multiplications
[40]. However, all these DL-based channel estimation work
ignore the time sequence of the CSI. In another word, the
adjacent observations of the time-varying CSI can be further
utilized for more precise prediction.

To track the time varying channel, it is necessary to
give neural networks the ability of learning the behavior of
the correlation across time domain. There are two widely
considered methods called recurrent neural network (RNN)
and LSTM on solving the time-varying tasks, such as natural
language processing. Both methods consider the information
from the previously entered data and the currently entered data
to predict. Specially, RNN has feedback loops to maintain
information over time. However, it’s difficult for RNN on
learning long-term temporal dependencies due to the vanish-
ing gradient problem. Differently, LSTM introduces input and
forget gates for better preservation of long-term dependencies
on dealing gradient flow [42].

By combining the advantages of DNN with multilayer per-
ception mechanism on extracting characteristics of complex
environment and LSTM with different input/output layers
on passing information across time domain, in this section,
DNN followed by Stacked Bi-LSTM framework is proposed
to track the time sequence CSI in IRS-assisted UAV com-
munication systems. The illustration of the overall structure
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Fig. 2. The illustration framework of the overall channel tracking algorithm.

Lk,m =
√
(|Dk sinαU,k| −∆m sinψU)2 + (Dk cosαU,k +∆m cosψU)2 + z2U, (12)

Lk,n =
√
(|DS,k sinαS,k| −∆n sinψS)2 + (DS,k cosαS,k +∆n cosψS)2 + z2S , (13)

Lm,n =

√
(|DS cosαU,S| −∆m cosψU +∆n cosψS)2 + (DS sinαU,S +∆n sinψS−

∆m sinψU)2 + (zU − zS)2
. (14)

of the proposed algorithm is shown in Fig. 2. There are
mainly two modules in this framework: DNN for denoising
pre-estimation based on off-line trained model and Stacked
Bi-LSTM for tracking with assist of the history sequence
information. To present the channel tracking problem in the
vector form, we denote yk(t) = vec (Y k(t)) ∈ CMNp×1 and
hk(t) = vec (Hk(t)) ∈ CM(N+1)×1.

A. Module One: DNN Channel Estimation Framework

DNN is an extension version of the artificial neural network
with multiple hidden layers between the input and output
layers [43]. To be specific, each hidden layer has multiple neu-
rons and each output is the weighted sum of neurons operated
by a nonlinear function. The Sigmoid function fSigmoid(x) =

1
1+e−x and the ReLU functions fReLU(x) = max(0, x) are the
widely used nonlinear function for activation in the DNN.

The pre-estimation DNN is shown in Fig. 2(a) with LD−2
hidden layers among total LD layers. The lth hidden layer of
the network consists of Ne neurons where 2 ⩽ l ⩽ LD − 1
and 1 ⩽ ne ⩽ Ne. The DNN input vector Yk(t) =
[R(yk(t)); I(yk(t))] ∈ RMNP×2 with the real and imaginary
part of yk(t) as R(yk(t)) = [R(yk,1(t)), ...,R(yk,MNp

(t))]
and I(yk(t)) = [I(yk,1(t)), ...,I(yk,MNp

(t))], respectively.
The total number of input layer neurons is 2MNp. Similarly,
the DNN output vector Ĥk(t) = [R(ĥk(t)); I(ĥk(t))] ∈
RM(N+1)×2. The total number of output layer neurons is
2M(N + 1). The total number of neurons on each hidden
layer is defined as 16MNP .

To express the DNN transmission principle, we use il
represents the input of the lth layer neurons. ol,ne

represents
the output of the nthe neuron at lth layer. W (DNN)

l and b(DNN)
l

Algorithm 1 Training of Module One: Channel Pre-
estimation DNN

Input:Training received signal Yk(1), ...,Yk(T ), training
true channel information Hk(1), ...,Hk(T ).

Output:Trained pre-estimation DNN.
Initialization:Randomize initial weights θ.

1: Generate a set of training sequences Yk(1), ...,Yk(T ) and
Hk(1), ...,Hk(T ) with selected SNRs and pilot overheads
size NP .

2: Design the pre-estimation DNN framework with LD

layers and Ne neurons in each hidden layer. Set the
learning rate and batch size.

3: while not convergence do
4: Update weights θ by minimizing loss function in (17).
5: end while

denote the weight matrix and the bias vector of the lth layer.
Hence, each neuron’s output can be expressed as

ol,ne
= fl,ne

(
b(DNN)
l,ne

+w(DNN)
l,ne

T il

)
, (15)

with fl,ne
as the activation function for lth layer and nthe

neuron. For training stage, with total B batch size, the output
of the DNN with ḃth batch can be expressed as

Ĥk(ḃ, t) = fLD
(...f2(Yk(ḃ, t);θ2)...;θLD

). (16)

During the training phase of constructing DNN, the param-
eter set θl = (W (DNN)

l , b(DNN)
l ) which represents the weights

and biases of the DNN model at the lth layer can be obtained
through gradient descent by recursively minimize the loss
function Loss(θ) until convergence. The loss function across
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Fig. 3. The structure of Stacked Bi-LSTM.

all the layers is defined as

Loss(θ) =
1

2M(N + 1)B

B∑
ḃ

(
Ĥk(ḃ, t)−Hk(ḃ, t)

)2

, (17)

with θ denotes all the parameter set across all the layers,
Hk(ḃ, t) = [R(hk(ḃ, t)); I(hk(ḃ, t))] denotes the true value
of the channel in the ḃth batch of the training process. The
detail of the training process of the channel pre-estimation
DNN can be found in Algorithm 1.

B. Module Two: Stacked Bi-LSTM Channel Tracking

As the second module of the overall algorithm framework,
Stacked Bi-LSTM tracks the time sequence CSI based on pre-
estimation denoised channel information (i.e., Ĥk(t − T ) to
Ĥk(t)) and previous channel tracking output (i.e., H̃k(t−T −
1) to H̃k(t−1)). Specifically, T denotes the total history time
slot utilized in the model.

1) LSTM: As an enhancement of the recurrent neural
network, LSTM is a gradient-based learning algorithm which
is able to connect previous information to the current task
[44], [45]. Normally, the time sequence data fed to the LSTMs
along the chain-like structure in a forward direction. The
illustration of a single LSTM cell is shown in Fig. 3 on the
left hand side. (This illustration structure only takes the first
layer forward LSTM as an example.)

The main difference between LSTM architecture and
widely known recurrent neural networks (RNN) is the hidden
layers in each LSTM cell. The first layer is called forget layer
which is also known as the forget gate fg,t. It is consist of the
information passed from previous layer H̃(t− 1) and current
denoised input Ĥ(t) with weights W̃ f , Ŵ f and bias bf along
with activation function:

fg,t = σ
(
Ŵ f Ĥk(t) + W̃ f H̃k(t− 1) + bf

)
. (18)

The second layer is the input gate ig,t which can be written
as

ig,t = σ
(
Ŵ iĤk(t) + W̃ iH̃k(t− 1) + bi

)
. (19)

It has the similar structure as the forget gate fg,t but with
different weights W̃ i, Ŵ i and bias bi. The third layer is the

cell input state cg,t that can be calculated as

cg,t = tanh
(
Ŵ cĤk(t) + W̃ cH̃k(t− 1) + bc

)
, (20)

through a tanh function. The final layer is called output gate
og,t, which can be calculated as

og,t = σ
(
Ŵ oĤk(t) + W̃ oH̃k(t− 1) + bo

)
. (21)

To summarize the aforementioned hidden layers structure,
W and b are the weight matrix and bias vector of the
corresponding parameters. σ represents the gate activation
function which is normally sigmoid function.

Apart from the cell input state cg,t in the hidden layers,
there are two other cell states in the structure: the previous
cell output state c(t − 1) fed in the current LSTM cell, and
the current cell output state c(t) passed to the next LSTM
cell. The output state at current time t can be updated as

c(t) = fg,t ⊗ c(t− 1) + ig,t ⊗ cg,t. (22)

More importantly, the conventional input layer is the denoised
time sequence Ĥk(t) at time slot t passed from DNN pre-
estimation. Finally, the output layer can be calculated as

H̃k(t)
′
= og,t ⊗ tanh(c(t)). (23)

2) Stacked Bi-LSTM: The illustration of the Stacked Bi-
LSTM is shown in Fig. 3 on the right hand. To overcome the
drawback of single LSTM cell which can only capture the
history information, bidirectional structure has been proposed
to combine both forward and backward directions to be able
to utilize both history and future information [46]. Hence the
forward output H̃k(t)

′(f) and backward output H̃k(t)
′(b) of

each LSTM cell is calculated based on the relative input and
the output layer function in (23). The forward layer output is
iteratively calculated based on the time slot t − T to t − 1.
Similarly, the backward layer output is calculated based on
the reversed time sequence t − 1 to t − T . The output of
bidirectional structure can be expressed as

H̃k(t)
′
= σf,b

(
H̃k(t)

′(f) ⊕ H̃k(t)
′(b)

)
, (24)
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Algorithm 2 Training of Module Two: Channel Tracking
Stacked Bi-LSTM

Input:Pre-estimation Ĥk(1), ..., Ĥk(T ) training sequence,
true channel information Hk(1), ...,Hk(T ) training sequence.

Output:Trained tracking model for the current sequence.
Initialization:Randomize initial weights W and bias b.

1: Generate a new set of training sequences
Ĥk(1), ..., Ĥk(T ) and Hk(1), ...,Hk(T ) with selected
SNR, pilot overheads size NP , and T historic time step.

2: Design the bi-directional tracking framework with LS

stacked layers and T historic time step in each layer. Set
the learning rate and batch size.

3: while not convergence do
4: Update weights W and bias b by minimizing loss

function in (17).
5: end while

Algorithm 3 Proposed Overall Channel Tracking Algorithm
Input: Received signal Yk(1), ...,Yk(T ).
Output: Channel tracking information H̃k(T ).
% Module One Channel Pre-estimation:

1: Construct the LD layers DNN framework.
2: Load the DNN optimized parameters that has been trained

in Algorithm 1.
3: Pre-estimate the channel information Ĥk(1), ..., Ĥk(T ).

% Module Two Channel Tracking:
4: Train the channel tracking model as in Algorithm 2 with

(T − 1) sequence data and T historic time step.
5: Use time sequence T−T to T−1 as input data to track T

channel information H̃k(T ) based on the trained tracking
model.

which is the combination of the forward and backward output
with the pre-defined merge mode σf,b. The σf,b function can
be concatenating, summation, average or multiplication.

It has been proved that by stacking multiple hierarchical
models, the performance can be improved progressively [47].
Hence, we adopt a stacked structure where the output from
the lower layer is then fed as the input to the upper layer with
LS ⩾ 2 Bi-LSTM layers. The workflow of the Stacked Bi-
LSTM considers both forward and backward directions and
deeper structure with T time slots. The final tracking output
after the Lth

S layer of the Stacked Bi-LSTM can be written as

H̃k(t) = σf,b

(
H̃k(t)

′(f)
LS

⊕ H̃k(t)
′(b)
LS

)
. (25)

The training process of the channel tracking Stacked Bi-
LSTM can be found in Algorithm 2. The proposed overall
channel tracking algorithm can be found in Algorithm 3.

IV. NUMERICAL RESULTS

In this section, the training loss of various algorithms, the
channel tracking performance and the complexity are evalu-
ated. Based on the framework with two modules, we specially
compare the channel tracking performance of DNN, DNN
followed by LSTM, DNN followed by Bi-LSTM and DNN
followed by Stacked Bi-LSTM. Specifically, DNN followed
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Fig. 4. Loss function of the channel pre-estimation DNN with different
number of pilot overheads sizes NP = 10, 20 and DNN total layers LD =
3, 4, 5, 6.

by Stacked Bi-LSTM is the proposed algorithm we mainly
focused on evaluated. Basic parameters are set as follows:
carrier frequency fc = 5.2GHz, the UAV speed vU = 5m/s
with azimuth and elevation angle of UAV speed γU,α = π/6
and γU,β = π/6. The kth user speed vk = 5m/s with
azimuth angle of user speed γk,α = π/24. To prove the
superiority tracking performance of our proposed scheme, in
the simulation, we consider one moving user in the system.
Total number of IRS reflection elements N = 8 and total
number of antenna elements on the kth UAV M = 8. The
antenna angle on UAV is ψU = π/6, the reflecting surface
on IRS has fixed physical flat angle ψS = π/6. The height of
UAV HU = 2000m, the height of IRS HS = 100m. The initial
relative position of the UAV, IRS, and the kth user is shown in
Fig.1 (b) with IRS location as (−600m,−600m, 100m) and
UAV location as (500m, 600m). The total time sequence is
200 time slots2 with train test split rate set as 0.8 for channel
tracking performance evaluation. To be noticed, during the
off-line learning, the adaptive moment (Adam) estimation
optimizer is employed.

A. Loss function

Firstly, the loss function of the channel pre-estimation DNN
with a different number of pilot overheads sizes NP and
hidden layers LD are shown in Fig. 4. The total batch size B
and learning rate ε are set as 512, 0.001 for training the pre-
estimation DNN. The total training data set is selected from
many SNR= −5, 0, 5, 10, 15, 20dB and blockage probability
from pk = 0.3, 0.4, 0.5, 0.6 with T = 200 sequences. It can
be observed that when LD = 3 for both NP = 10, 20 require
longer epochs to achieve convergence of the loss function.
The difference for convergence of the loss function between
LD = 4, 5, 6 is not significant. Besides, the converge loss
for pilot overheads size NP = 10 is lower than NP = 20.

2For simplicity, we assume that the tracking signal is received in every
time slot. This means that T = 200 in the simulation.
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Fig. 5. (a) Loss function of various channel tracking methods with different
historical time step T = 2, 3, 4. (b) Loss function of various channel tracking
methods with different batch sizes B.
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Fig. 6. (a) Loss function of the proposed algorithm with various batch sizes B
and learning rate ϵ. (b) Loss function of the proposed algorithm with various
historical time steps T = 2, 4 and stacked layers LS = 3, 4.

The reason lies in that with NP increases, the input size and
neurons on each layer are increased accordingly, resulting
in a more complex structure. Empirically, our model can
achieve sufficient performance gain with relative small NP .
Hence, LD = 4 and NP = 10 are adopted for the remaining
simulations.

Secondly, the loss function of different channel tracking
methods (LSTM, Bi-LSTM and proposed algorithm) are
compared in Fig. 5. The proposed algorithm has total stacked
layers LS = 3. The channel sequence for training difference
tracking methods is set as SNR= 20dB and pk = 0.3 with
a total T = 200 sequence. In Fig.5 (a), different historical
time step T = 2, 3, 4 are compared based on B = 64 and
ϵ = 0.02. The proposed algorithm can quickly converge to
loss near 0 for selected dynamic channel sequence epochs
compared to the other two methods. It’s worth noticing that
the suitable hyper-parameter T can be selected differently
based on various scenarios, such as different vU and vk. In
Fig.5 (b), different batch size 64, 128 are compared based on
T = 2 and ϵ = 0.02. The proposed algorithm shows a similar
convergence performance.

Additionally, loss function of the proposed algorithm with
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Fig. 7. NMSE performance for different algorithms.(a) NP = 10. (b)NP =
25.

different hyper-parameters are shown in Fig. 6 for the channel
tracking of total T = 200 dynamic channel under SNR=
20dB, pilot overheads size NP = 10. By comparing different
learning rates in Fig. 6 (a), T and LS in Fig. 6 (b), ϵ = 0.01
with B = 64, T = 2 and LS = 3, the hyper-parameter set
that require slightly less epochs to achieve convergence of the
loss function are selected for channel tracking performance
evaluation in the following subsection.

B. Channel tracking performance

To evaluate the tracking performance of the algorithms, we
refer the performance metric normalized mean square error
(NMSE) [28] as

NMSE =
E
(
∥H̃k −Hk∥2

)
E (∥Hk∥2)

, (26)

where H̃k is the estimated tracking channel, Hk is the
true channel. To evaluate the NMSE performance of the
algorithms, the total T = 200 sequence is divided into train
and test data set with time slot 1 − 160 as training set (for
LSTM, Bi-LSTM and proposed) and 161 − 200 as testing
tracking data set. The performance is evaluated over the
average of the total 500 rounds. A conventional least square
(LS) algorithm [48] is applied in our system as a benchmark.

In Fig. 7, it can be observed that all algorithms show down
trends NMSE performance with SNR increases. The pro-
posed algorithm maintains significantly superior performance
compared to other algorithms with small pilot overheads.
It’s worth noticed that LS and DNN are static estimation
methods that only take the received signal into consideration
for estimation. Differently, the rest three algorithms shows
performance gain as they also observe the correlation across
time domain. Specially, with bi-directional and stacked struc-
ture, our proposed algorithm can not only extract information
from past, but also from future and deeper network structure.

C. Complexity

The complexity and computation time of different algo-
rithms are characterize in this subsection. The complexity
of the pre-estimation DNN without considering the bias is
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TABLE II
TABLE OF OPERATION TIME (MILLISECOND) FOR CHANNEL

PRE-ESTIMATION AND TRACKING

Module One: Different Layers of Pre-estimation DNN
M = 8, N = 8 M = 8, N = 4

NP = 10 NP = 15 NP = 20 NP = 10
DNN LD = 3 0.209 0.343 0.327 0.068
DNN LD = 4 0.334 0.558 0.575 0.111
DNN LD = 5 0.421 0.711 0.722 0.148
DNN LD = 6 0.551 0.885 0.920 0.185

Module Two: Different Algorithms for Channel Tracking
M = 8, N = 8 M = 4, N = 8

NP = 10 T = 2 T = 5 T = 2 T = 5
LSTM 2.956 2.983 0.283 0.394
Bi-LSTM 4.630 5.215 0.457 0.719
Stacked Bi-LSTM LS = 2 8.770 10.543 0.733 1.442
Stacked Bi-LSTM LS = 3 12.813 15.477 1.220 2.165

O
(∑LD−1

l=1 (N l
eN

l+1
e )

)
with N l

e represents the neuron num-
bers in each layer. To be specific, the input layer (l = 1)
has 2MNP neurons, each hidden layer (l = 2, ..., (LD − 1))
has 16MNP neurons, and the output layer (l = LD) has
2M(N + 1) neurons. The complexity of a single LSTM
cell can be calculated as O (Nc(4Nc + 4Ni +No + 3)) [49].
Specifically, Nc, Ni, No are the number of memory cell,
the number of input units and the number of output units,
respectively. The Ni and No are both 2M(N +1). Moreover,
for LSTM Nc = 1T , Bi-LSTM Nc = 2T , Stacked Bi-LSTM
Nc = 2T LS . For Bi-LSTM, the forward and backward bi-
directional estimation gives Nc = 2T . For Stacked Bi-LSTM,
with LS multiple layers of Bi-LSTM stacked together, it’s
obvious that Nc = 2T LS .

As can be seen from Table. II that the Python Jupyter
Notebook run-time of the multiple layers of pre-estimation
DNN increases when layers LD, NP , M increases. Besides,
for channel tracking, Stacked Bi-LSTM requires a longer
running time due to the complex structure, but achieves
dramatically better NMSE performance over dynamic channel
sequences, as proved in previous subsection.

V. CONCLUSION

In this paper, we developed the 3D geometry dynamic
channel model in IRS-assisted UAV-enabled communication
system. The navigation of UAV and the movement of mobile
users are considered to construct the time-variant channel.
There are mainly two dominant links in the channel model:
dynamic LoS link (user-UAV) and dynamic virtual LoS
link (user-IRS-UAV). We further proposed a novel DL-based
channel tracking algorithm composed of two modules: DNN
channel pre-estimation for denoising and Stacked Bi-LSTM
for channel tracking. Specifically, Stacked Bi-LSTM is a
framework that can trace historical information in the time
sequence based on a bidirectional structure over multiple
stacked layers. Simulation results have shown that the pro-
posed channel tracking algorithm dramatically outperforms
different benchmarks with small pilot overheads and com-
parable computation complexity.
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