Degradation of doxycycline antibiotics using lanthanum copper oxide microspheres under simulated sunlight
In this study, lanthanum copper oxide was synthesized under hydrothermal techniques and characterized for doxycycline degradation. The catalyst exhibited enhanced photocatalytic doxycycline degradation under visible light owing to its compatible bandgap energy (1.7 eV). The XRD data revealed high crystallinity of the material with no noticeable impurities. Three-dimensional microspheres of varying sizes (average diameter of 2.52 μm) were observed from SEM. EDX confirms the successful synthesis of La2CuO4. The effect of DC concentration, catalyst dosage, and initial pH on the degradation rate of DC was studied methodically. Interestingly, about 85% of doxycycline (10 mg/L) was degraded within 120 min of light-emitting diode irradiation at pH 10. Oxygen vacancies and surface defects were determined through photoluminescence spectra. The recyclability experiments suggested that the catalyst is capable of degrading DC for three consecutive runs. Radical trapping trials suggested that holes (h+), superoxide radicals (●O2−), and hydroxyl radicals (●OH) are involved in the photodegradation of DC. Herein, the novel approach of La2CuO4 synthesis and the efficient visible-light harvesting capability of as-prepared catalyst reveal the potentiality for DC degradation thereby opening a new horizon of research employing La2CuO4 used for various environmental applications.
History
School
- Aeronautical, Automotive, Chemical and Materials Engineering
Department
- Chemical Engineering
Published in
Environmental Science and Pollution ResearchVolume
29Issue
38Pages
57204 - 57214Publisher
SpringerVersion
- AM (Accepted Manuscript)
Rights holder
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer NaturePublisher statement
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11356-022-19842-3Acceptance date
2022-03-17Publication date
2022-03-28Copyright date
2022ISSN
0944-1344eISSN
1614-7499Publisher version
Language
- en