Loughborough University
PET_finalPaper_hess-17-1365-2013.pdf (1.14 MB)

Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections

Download (1.14 MB)
journal contribution
posted on 2016-07-27, 08:27 authored by Christel Prudhomme, Jennifer Williamson
Potential evapotranspiration (PET) is the water that would be lost by plants through evaporation and transpiration if water was not limited in the soil, and it is commonly used in conceptual hydrological modelling in the calculation of runoff production and hence river discharge. Future changes of PET are likely to be as important as changes in precipitation patterns in determining changes in river flows. However PET is not calculated routinely by climate models so it must be derived independently when the impact of climate change on river flow is to be assessed. This paper compares PET estimates from 12 equations of different complexity, driven by the Hadley Centre's HadRM3-Q0 model outputs representative of 1961-1990, with MORECS PET, a product used as reference PET in Great Britain. The results show that the FAO56 version of the Penman-Monteith equations reproduces best the spatial and seasonal variability of MORECS PET across GB when driven by HadRM3-Q0 estimates of relative humidity, total cloud, wind speed and linearly bias-corrected mean surface temperature. This suggests that potential biases in HadRM3-Q0 climate do not result in significant biases when the physically based FAO56 equations are used. Percentage changes in PET between the 1961-1990 and 2041-2070 time slices were also calculated for each of the 12 PET equations from HadRM3-Q0. Results show a large variation in the magnitude (and sometimes direction) of changes estimated from different PET equations, with Turc, Jensen-Haise and calibrated Blaney-Criddle methods systematically projecting the largest increases across GB for all months and Priestley-Taylor, Makkink, and Thornthwaite showing the smallest changes. We recommend the use of the FAO56 equation as, when driven by HadRM3-Q0 climate data, this best reproduces the reference MORECS PET across Great Britain for the reference period of 1961-1990. Further, the future changes of PET estimated by FAO56 are within the range of uncertainty defined by the ensemble of 12 PET equations. The changes show a clear northwest-southeast gradient of PET increase with largest (smallest) changes in the northwest in January (July and October) respectively. However, the range in magnitude of PET changes due to the choice of PET method shown in this study for Great Britain suggests that PET uncertainty is a challenge facing the assessment of climate change impact on hydrology mostly ignored up to now.


This study was undertaken under the partnership project “Future Flows and Groundwater Levels, SC090016” jointly funded by the Environment Agency of England and Wales, the UK Department for Environment, Food and Rural Affairs, the UK Water Industry Research, the Natural Environment Research Centre (CEH and BGS) and Wallingford HydroSolutions. They are all gratefully acknowledged.



  • Social Sciences


  • Geography and Environment

Published in

Hydrology and Earth System Sciences






1365 - 1377


PRUDHOMME, C. and WILLIAMSON, J., 2013. Derivation of RCM-driven potential evapotranspiration for hydrological climate change impact analysis in Great Britain: a comparison of methods and associated uncertainty in future projections. Hydrology and Earth System Sciences, 17, pp. 1365–1377.


European Geosciences Union (© the authors) © Author(s). Published by Copernicus Publications on behalf of the European Geosciences Union


  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/3.0/

Publication date







  • en

Usage metrics

    Loughborough Publications



    Ref. manager