C8NJ05704D.pdf (1.37 MB)

Design and manufacture of functional catalyst-carrier structures for the bioorthogonal activation of anticancer agents

Download (1.37 MB)
journal contribution
posted on 14.12.2018, 11:57 by Carmen Torres, Ana M. Perez-Lopez, Mohammad Alqahtani, Asier Unciti-Broceta, Belen Rubio-Ruiz
Novel palladium (Pd)-loaded titanium (Ti) devices with high biocompatibility and catalytic activity were prepared using a range of fabrication methods such as powder metallurgy (i.e. sintering with and without space-holder), sputtering, pulsed laser deposition and supersonic cluster beam deposition. The surface of the Ti-[Pd] devices were physico-chemically characterised to confirm the non-alloyed state of the Pd coating onto the titanium substrate. The Pd thickness was optimised to achieve maximum surface area (i.e. maximum catalytic effect) using the minimum amount of material in each method for cost effective production. The catalytic response of the different Ti-[Pd] devices was evaluated under biocompatible conditions by employing an off-on Pd-activatable fluorescent probe. The most robust coating of Pd was produced by an optimised magnetron sputtering method. The sputtered Ti-[Pd] devices were selected to induce the bioorthogonal uncaging of the anticancer drug Vorinostat from a pharmacologically-inactive Pd-activatable precursor in cancer cell culture, demonstrating the capacity of these devices to mediate a local anti-tumour effect via in-situ release of a clinically approved drug. This approach is the first step towards surgically implantable devices that could facilitate targeting affected areas with high spatial selectivity, improving pharmacological activity and reducing systemic side effects through localised treatment directly at the cancer site.


CT-S acknowledges the support from the EPSRC Platform Grant Embedded Integrated Intelligent Systems for Manufacturing (EP/P027482/1). AP-L and AU-B are grateful to the EPSRC (EP/N021134/1) for funding. BR-R thanks the EC (H2020-MSCA-IF-2014-658833, ChemoBOOM) for financial support. MA was funded by the Cultural Bureau of the Royal Embassy of Saudi Arabia in London (no. JU64).



  • Mechanical, Electrical and Manufacturing Engineering

Published in

New Journal of Chemistry






TORRES-SANCHEZ, C. ... et al, 2019. Design and manufacture of functional catalyst-carrier structures for the bioorthogonal activation of anticancer agents. New Journal of Chemistry, 43, pp. 1449-1458


© The Royal Society of Chemistry and the Centre National de la Recherche Scientifique


AM (Accepted Manuscript)

Publisher statement

This paper was accepted for publication in the journal New Journal of Chemistry and the definitive published version is available at https://doi.org/10.1039/C8NJ05704D

Acceptance date


Publication date