Loughborough University
Browse

Determination of collisional cross section using microscale high-field asymmetric waveform ion mobility spectroscopy–mass spectrometry (FAIMS-MS)

Download (1.46 MB)
journal contribution
posted on 2025-02-28, 15:26 authored by Kristina KrasnovaKristina Krasnova, Colin Creaser, Jim ReynoldsJim Reynolds

Rationale

Collisional cross sections (CCS) are an important characteristic of gas-phase ions that are measured using ion mobility-mass spectrometry (IMS). Typically, CCS measurements are performed with drift-tube IMS or travelling-wave IMS. However. in a high-field asymmetric waveform ion mobility (FAIMS) device, ion heating effects make CCS determination more challenging. This research explores whether CCS can be predicted with microscale FAIMS by using known CCS standards.

Methods

An Owlstone ultraFAIMS microscale FAIMS spectrometer was coupled to an Orbitrap Exactive mass spectrometer. Two different CCS standard mixtures (tetraalkylammonium halides [TAAHs] and poly-DL-alanine oligomers) were used to evaluate the system's potential to determine CCS. Test peptide bradykinin acetate and substance P were used to evaluate CCS determination accuracy for singly and doubly charged peptide species using external calibration with a series of poly-DL-alanine peptides for +1, +2 charge states.

Results

Calibrations with excellent correlation coefficients (R2 = 0.99) for both TAAHs and poly-DL-alanine were obtained. Good accuracy of determination was achieved for bradykinin [M + 2H]2+ with a ± 0.5% difference between experimental and published CCS at a dispersion field (DF) strength of 250 Td; the model proved less accurate for bradykinin [M + H]+ (±1.4% at 240 Td). The accuracy of determination for the [M + H]+ and [M + 2H]2+ ions of substance P was within ± 5% and ± 3% at 250 Td, respectively, while at higher DF values, accuracy decreased to approximately 5%.

Conclusions

Distinct relationships were observed between CCS and transmission CF with both calibrants. Optimum accuracy was obtained at DF 240–260 Td. At lower DF, accuracy is reduced by insufficient resolution of analyte ions from solvent cluster adducts, while at higher DF values, poor transmission becomes a factor. Nevertheless, these data suggest microscale FAIMS can conduct CCS measurements with reasonable accuracy when the compound being measured has similar structural features to the CCS standards used.

History

School

  • Science

Department

  • Chemistry

Published in

Rapid Communications in Mass Spectrometry

Volume

39

Issue

10

Publisher

Wiley

Version

  • VoR (Version of Record)

Rights holder

© The Author(s).

Publisher statement

This is an Open Access article published by Wiley under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. See https://creativecommons.org/licenses/by/4.0/

Acceptance date

2025-02-08

Publication date

2025-02-17

Copyright date

2025

ISSN

0951-4198

eISSN

1097-0231

Language

  • en

Depositor

Dr Jim Reynolds. Deposit date: 18 February 2025

Article number

e10010

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC