Corneal decellularization has become an increasingly popular technique for generating scaffolds for corneal regeneration. Most decellularization procedures result in tissue swelling, thus limiting their application. Here, the use of a polysaccharide, dextran, to reduce swelling and conserve the native corneal structure during decellularization was investigated. Corneas were treated with 1% Triton X-100, 0.5% sodium dodecyl sulfate, and nucleases under constant rotation followed by extensive washing. To reduce swelling, decellularization solutions were supplemented with 5% dextran either throughout the whole decellularization process or during the washing cycles only. Quantitative analysis of DNA content showed a 96% reduction after decellularization regardless of the addition of dextran. Dextran resulted in a significant reduction in swelling from 3.85 ± 0.43 nm without to 1.94 ± 0.29-2.01 ± 0.37 nm (p < 0.05) remaining at similar dimensions to the native tissue (1.73 ± 0.23 nm). Tissue transparency was restored to all decellularized corneas following submersion in glycerol. Transmission electron microscopy (TEM) analysis found that dextran must be present throughout the decellularization protocol to preserve the native corneal architecture, anisotropy analysis demonstrated comparable results (0.22 ± 0.03) to the native cornea (0.24 ± 0.02), p > 0.05. Dextran can counteract the detrimental effects of decellularizing agents on the biomechanical properties of the tissue resulting in similar compressive moduli (mean before decellularization: 5.40 ± 1.18 kPa; mean after decellularization with dextran: 5.64 ± 1.34 kPa, p > 0.05). Cells remained viable in the presence of decellularized scaffolds. The findings of this study indicate that dextran not only prevents significant corneal swelling during decellularization but also enhances the maintenance of the native corneal ultrastructure.
Funding
Research conducted with the financial support of Science Foundation Ireland and Marie-Curie Action COFUND grant number: 11/SIRG/B2104; EPSRC Engineering, Tissue Engineering and Regenerative Medicine (E-TERM), grant number: EP/I017801/1 andCOSTActionBM-1302, Joining Forces
in Corneal Regeneration Research, as part of a short-term scientific mission.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
Tissue Engineering - Part C: Methods
Volume
22
Issue
6
Pages
561 - 572
Citation
LYNCH, A.P., WILSON, S. and AHEARNE, M., 2016. Dextran preserves native corneal structure during decellularization. Tissue Engineering Part C Methods, 22 (6), pp. 561-572.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2016-04-08
Publication date
2016-05-09
Notes
Final publication is available from Mary Ann Liebert, Inc., publishers http://dx.doi.org/10.1089/ten.tec.2016.0017.