posted on 2017-06-22, 14:54authored byLi Liu, Zhiwen Chen, Zhaoxia ZhouZhaoxia Zhou, Guang Chen, Fengshun Wu, Changqing Liu
The operating temperature of high-temperature electronics can significantly promote the growth of intermetallic compounds (IMCs) at solder/substrate interfaces, particularly for low-cost Zn-based solders because of the rapid rate of reaction of Zn with Cu. Thus, a reliable and robust diffusion barrier is indispensable for suppressing the reactions between solder and substrate. In this work, a ternary Ni-W-P alloy was prepared via electroless plating. Its diffusion barrier property was evaluated by comparing the microstructures of IMC layers in Zn-5Al/Ni-W-P/Cu and Zn-5Al/Cu interconnects after liquid-solid reaction for prolonged durations. When the reaction lasted for 30 min, the thickness of the Al3Ni2 produced in the Zn-5Al/Ni-W-P/Cu solder interconnects was only 2.15 μm, whereas the thickness of the interfacial layer of Cu-Zn IMCs (CuZn4, Cu5Zn8 and CuZn) at the Zn-5Al/Cu interface was 94 μm. Because of the unbalanced growth of the IMCs in the Zn-5Al/Cu interconnects, notable numbers of Kirkendall voids were identified at the CuZn4/Cu5Zn8, Cu5Zn8/CuZn and CuZn/Cu interfaces after prolonged liquid-solid reaction. By contrast, the Al3Ni2 layer in the Zn-5Al/Ni-W-P/Cu solder joints remained intact, showing the potential to effectively enhance the mechanical reliability of electronic devices.
Funding
This research was supported by a Marie Curie International Research Staff Exchange Scheme Project within the 7th European Community Framework Programme, No. PIRSES-GA-2010-269113, entitled “Micro-Multi-Material Manufacture to Enable Multifunctional Miniaturised Devices (M6)”, as well as an EPSRC-CPB Funding (GRANT NO. FS14). The authors also acknowledge the research funding by the National Nature Science Foundation of China (NSFC GRANT NO. 61261160498).
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
Journal of Alloys and Compounds
Citation
LIU, L. ... et al, 2017. Diffusion barrier property of electroless Ni-W-P coating in high temperature Zn-5Al/Cu solder interconnects. Journal of Alloys and Compounds, 722, pp. 746–752.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2017-06-11
Publication date
2017
Notes
This paper was accepted for publication in the journal Journal of Alloys and Compounds and the definitive published version is available at https://doi.org/10.1016/j.jallcom.2017.06.122