Loughborough University
Browse
ncomms11525.pdf (715.13 kB)

Direct electronic measurement of Peltier cooling and heating in graphene

Download (715.13 kB)
journal contribution
posted on 2018-04-19, 11:25 authored by I.J. Vera-Marun, J.J. van den Berg, Fasil DejeneFasil Dejene, B.J. van Wees
Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

Funding

We acknowledge the financial support of the Netherlands Organisation for Scientific Research (NWO), the Zernike Institute for Advanced Materials, the Dutch Foundation for Fundamental Research on Matter (FOM) and the European Union Seventh Framework Programmes ConceptGraphene (No. 257829), Graphene Flagship (No. 604391) and the Future and Emerging Technologies (FET) programme under FETOpen grant number 618083 (CNTQC).

History

School

  • Science

Department

  • Physics

Published in

Nature Communications

Volume

7

Citation

VERA-MARUN, I.J. ... et al., 2016. Direct electronic measurement of Peltier cooling and heating in graphene. Nature Communications, 7: 11525.

Publisher

Nature Publications

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Acceptance date

2016-04-05

Publication date

2016-05-10

Notes

This is an Open Access Article. It is published by Nature Publications under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

ISSN

2041-1723

eISSN

2041-1723

Language

  • en

Article number

11525

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC