posted on 2007-03-30, 10:46authored byJose A. Hernandez Gutierrez, Iain PhillipsIain Phillips, Javier Aracil
The particular statistical properties found in network measurements, namely self-similarity and
long-range dependence, cannot be ignored in modelling network and Internet traffic. Thus, despite
their mathematical tractability, traditional Markov models are not appropriate for this purpose,
since their memoryless nature contradicts the burstiness of transmitted packets. However, it is
desirable to find a similarly tractable model which is, at the same time, rigorous at capturing the
features of network traffic.
This work presents the discrete-time heavy-tailed chains, a tractable approach to characterise
network traffic as a superposition of discrete-time “on/off” sources. This is a particular case of
the generic “on/off” heavy-tailed model, thus showing the same statistical features as the former;
particularly, self-similarity and long-range dependence, when the number of aggregated sources
approaches infinity.
The model is then applicable to characterise a number of discrete-time communication systems,
for instance ATM and Optical Packet Switching, and further derive meaningful performance met-
rics, such as the average burst duration and the number of active sources in a random instant.
History
School
Science
Department
Computer Science
Pages
203897 bytes
Citation
HERNANDEZ, J.-A., PHILLIPS, I.W. and ARACIL, A., 2007. Discrete-time heavy-tailed chains, and their properties in modelling network traffic. ACM Transactions on Modeling and Computer Simulation, 17 (4), article 17