This paper studies the medium access design for secondary users (SUs) from a game-theoretic learning perspective. In consideration of the random return of primary users (PUs), a distributed SU access approach is presented based on an adaptive carrier sense multiple access (CSMA) scheme, in which each SU accesses multiple idle frequency slots of a licensed frequency band with adaptive activity factors. The problem of finding optimal activity factors of SUs is formulated as a potential game, and the existence, feasibility, and optimality of Nash equilibrium (NE) are analyzed. Furthermore, to achieve NEs of the formulated game, learning-based algorithms are developed in which each SU independently adjusts its activity factors. Convergence properties of best-response dynamics and log-linear dynamics are studied. Subsequently, by learning other SUs' behavior from locally available information, the convergence with probability of one to an arbitrarily small neighborhood of the globally optimal solution is investigated by both analysis and simulation.
Funding
The work presented in this paper is partly supported by
the Natural Sciences and Engineering Research Council of Canada (NSERC)
Discovery Program, and the NSERC Collaborative Research and Development
Grant with BlackBerry
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
IEEE Transactions on Vehicular Technology
Volume
63
Issue
8
Pages
3715 - 3725
Citation
DERAKHSHANI, M. and LE-NGOC, T., 2014. Distributed learning-based spectrum allocation with noisy observations in cognitive radio networks. IEEE Transactions on Vehicular Technology, 63 (8), pp. 3715 - 3725.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/