Core-shell composites with strong phase-phase contact could provide an incentive for
catalytic activity. A simple yet efficient H2O-mediated method has been developed to
synthesize mesoscopic core-shell W@WC architecture with dodecahedral microstructure, via one-pot reaction. The H2O plays an important role in the resistance of carbon diffusion, resulting in the formation of the W core and W-terminated WC shell. Density functional theory (DFT) calculations reveal that adding W as core reduced the oxygen adsorption energy and provided the W-terminated WC surface. The W@WC exhibits significant electrocatalytic activities towards hydrogen evolution and nitrobenzene electro-reduction reactions, which are comparable to those found for commercial Pt/C, and substantially higher than those found for meso- and nano- WC materials. The experimental results were explained by DFT calculations based on the energy profiles in the hydrogen evolution reactions over WC, W@WC and Pt model surfaces. The W@WC also shows a high thermal stability and thus may serve as a promising more economical alternative to Pt catalysts in these important energy conversion and environmental protection applications. The current approach can also be extended or
adapted to various metals and carbides, allowing for the design and fabrication of a wide range of catalytic and other multifunctional composites.
Funding
Financial support was provided by Loughborough University and the UK EPSRC
(EP/I013229/1), Natural Science Foundation of Zheji ang Province (LQ15B030004),
International Science & Technology Cooperation Program of China (2010DFB63680).
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
ACS Appl. Mater. Interfaces
Citation
CHEN, Z-Y. ...et al., 2017. Dodecahedral W@WC composite as efficient catalyst for hydrogen evolution and Nitrobenzene reduction reactions. ACS Applied Materials and Interfaces, 9(24), pp.20594−20602.
Publisher
American Chemical Society
Version
VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Acceptance date
2017-05-31
Publication date
2017-05-31
Notes
This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.