Off-road vehicle performance, such as vehicle mobility, maneuverability, and traction performance is generally affected by the pneumatic tire-off-road terrain interaction. Modeling of such cases is usually based on empirical and semi-empirical solutions, which have limited applicability in real situations due to their inherent weaknesses. In this study, numerical simulation of the dynamic mobility of a rigid wheel on a deformable terrain is performed through a series of transient nonlinear dynamic finite element analyses with the use of the finite element code ABAQUS (v. 6.13). The dynamic interaction of a rigid wheel with the underlying soil during off-road vehicle
travel is simulated. The effects of the vertical load carried by the wheel, the tread pattern, the longitudinal and lateral tread parameters, and the slip ratio of the wheel on the wheel performance are investigated and useful results are extracted. The numerical results reveal that the effects of the tread pattern particularly tread depth and the terrain constitutive properties, such as soil cohesion can be of high importance for the general wheel response.
Funding
This work was supported by Jaguar Land Rover and the UK-EPSRC grant EP/K014102/1 as part of the jointly funded Programme for Simulation Innovation.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
Journal of Advances in Vehicle Engineering
Volume
2
Issue
4
Pages
210 - 218 (8)
Citation
BEKAKOS, C-A. ...et al., 2016. Dynamic response of rigid wheels on deformable terrains. Journal of Advances in Vehicle Engineering, 2(4), pp. 210-218.
Publisher
Knowledge Expanding Co.
Version
VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Acceptance date
2016-11-20
Publication date
2016
Notes
This is an Open Access Article. It is published by Knowledge Expanding Co. under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/