Loughborough University
Browse

Dynamical–statistical seasonal forecasts of winter and summer precipitation for the Island of Ireland

Download (9.38 MB)
journal contribution
posted on 2022-09-09, 11:05 authored by Saeed Golian, Conor Murphy, Robert WilbyRobert Wilby, Tom Matthews, Sean Donegan, Daire Foran Quinn, Shaun Harrigan
Seasonal precipitation forecasting is highly challenging for the northwest fringes of Europe due to complex dynamical drivers. Hybrid dynamical–statistical approaches offer potential to improve forecast skill. Here, hindcasts of mean sea level pressure (MSLP) from two dynamical systems (GloSea5 and SEAS5) are used to derive two distinct sets of indices for forecasting winter (DJF) and summer (JJA) precipitation over lead-times of 1–4 months. These indices provide predictors of seasonal precipitation via a multiple linear regression model (MLR) and an artificial neural network (ANN) applied to four Irish rainfall regions and the Island of Ireland. Forecast skill for each model, lead time, and region was evaluated using the correlation coefficient (r) and mean absolute error (MAE), benchmarked against (a) climatology, (b) bias corrected precipitation hindcasts from both GloSea5 and SEAS5, and (c) a zero-order forecast based on rainfall persistence. The MLR and ANN models produced skilful precipitation forecasts with leads of up to 4 months. In all tests, our hybrid method based on MSLP indices outperformed the three benchmarks (i.e., climatology, bias corrected, and persistence). With correlation coefficients ranging between 0.38 and 0.81 in winter, and between 0.24 and 0.78 in summer, the ANN model outperformed MLR in both seasons in most regions and lead-times. Forecast skill for summer was comparable to that in winter and for some regions/lead times even superior. Our results also show that climatology and persistence performed better than direct use of bias corrected dynamical outputs in most regions and lead-times in terms of MAE. We conclude that the hybrid dynamical–statistical approach developed here—by leveraging useful information about MSLP from dynamical systems—enables more skilful seasonal precipitation forecasts for Ireland, and possibly other locations in western Europe, in both winter and summer.

Funding

Science Foundation Ireland. Grant Number: SFI/17/CDA/4783

History

School

  • Social Sciences and Humanities

Department

  • Geography and Environment

Published in

International Journal of Climatology

Volume

42

Issue

11

Pages

5714-5731

Publisher

Wiley

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2022-02-03

Publication date

2022-02-15

Copyright date

2022

ISSN

0899-8418

eISSN

1097-0088

Language

  • en

Depositor

Prof Robert Leonard Wilby. Deposit date: 30 August 2022

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC