Dynamics of droplets impacting on aerogel, liquid infused, and liquid-like solid surfaces
Droplets impacting superhydrophobic surfaces have been extensively studied due to their compelling scientific insights and important industrial applications. In these cases, the commonly reported impact regime was that of complete rebound. This impact regime strongly depends on the nature of the superhydrophobic surface. Here, we report the dynamics of droplets impacting three hydrophobic slippery surfaces, which have fundamental differences in normal liquid adhesion and lateral static and kinetic liquid friction. For an air cushion-like (super)hydrophobic solid surface (Aerogel) with low adhesion and low static and low kinetic friction, complete rebound can start at a very low Weber (We) number (∼1). For slippery liquid-infused porous (SLIP) surfaces with high adhesion and low static and low kinetic friction, complete rebound only occurs at a much higher We number (>5). For a slippery omniphobic covalently attached liquid-like (SOCAL) solid surface, with high adhesion and low static friction similar to SLIPS but higher kinetic friction, complete rebound was not observed, even for a We as high as 200. Furthermore, the droplet ejection volume after impacting the Aerogel surface is 100% across the whole range of We numbers tested compared to other surfaces. In contrast, droplet ejection for SLIPs was only observed consistently when the We was above 5–10. For SOCAL, 100% (or near 100%) ejection volume was not observed even at the highest We number tested here (∼200). This suggests that droplets impacting our (super)hydrophobic Aerogel and SLIPS lose less kinetic energy. These insights into the differences between normal adhesion and lateral friction properties can be used to inform the selection of surface properties to achieve the most desirable droplet impact characteristics to fulfill a wide range of applications, such as deicing, inkjet printing, and microelectronics.
Funding
Biofilm Resistant Liquid-like Solid Surfaces in Flow Situations
Engineering and Physical Sciences Research Council
Find out more...DTP 2016-2017 Newcastle University
Engineering and Physical Sciences Research Council
Find out more...The Royal Society IEC\NSFC\191070
History
School
- Aeronautical, Automotive, Chemical and Materials Engineering
Department
- Materials
Published in
ACS Applied Materials & InterfacesVolume
15Issue
1Pages
2301 - 2312Publisher
American Chemical SocietyVersion
- VoR (Version of Record)
Rights holder
© The AuthorsPublisher statement
This is an Open Access Article. It is published by the American Chemical Society under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2022-12-14Publication date
2022-12-29Copyright date
2022ISSN
1944-8244eISSN
1944-8252Publisher version
Language
- en