Loughborough University
Browse
- No file added yet -

Effect of graphite morphology on the thermomechanical performance of compacted graphite iron

Download (4.19 MB)
Compacted graphite iron (CGI) has gained significant attention in automotive industry applications thanks to its superior thermomechanical properties and competitive price. Its main fracture mechanism at the microscale—interfacial damage and debonding between graphite inclusions and a metallic matrix—can happen under high-temperature service conditions as a result of a mismatch in the coefficients of thermal expansion between the two phases of CGI. Macroscopic fracture in cast iron components can be initiated by interfacial damage at the microscale under thermomechanical load. This phenomenon was investigated in various composites but still lacks information for CGI, with its complex morphology of graphite inclusions. This research focuses on the effect of this morphology on the thermomechanical performance of CGI under high temperatures. A set of three-dimensional finite-element models was created, with a unit cell containing a single graphite inclusion embedded in a cubic domain of the metallic matrix. Elastoplastic behaviour was assumed for both phases in numerical simulations. The effect of graphite morphology on the thermomechanical performance of CGI was investigated for pure thermal loading, focusing on a high-temperature response of its constituents. The results can provide a deeper understanding of the correlation between graphite morphology and CGI fracture mechanisms under high temperatures.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Metals

Volume

13

Issue

3

Publisher

MDPI

Version

  • VoR (Version of Record)

Rights holder

© The authors

Publisher statement

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Acceptance date

2023-02-21

Publication date

2023-02-24

Copyright date

2023

eISSN

2075-4701

Language

  • en

Depositor

Dr Konstantinos Baxevanakis. Deposit date: 7 March 2023

Article number

473

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC