Loughborough University
Browse
- No file added yet -

Effect of symmetric and asymmetric substitution on the optoelectronic properties of 9,10-dicyanoanthracene

Download (3.2 MB)
journal contribution
posted on 2019-06-21, 07:47 authored by Florian Glocklhofer, Arnulf Rosspeintner, Pakorn Pasitsuparoad, Simon Eder, Johannes Frohlich, Gonzalo Angulo, Eric Vauthey, Felix PlasserFelix Plasser
A set of substituted 9,10-dicyanoanthracenes (DCA) has been synthesized, their photophysical and electrochemical properties in liquid solution have been characterized and supplemented by high level ab initio quantum chemical calculations. Three different methoxy-group-containing substituents have been linked to the DCA core in a symmetric and asymmetric fashion to produce six different species with strong quadrupole and dipole moments, respectively. The major difference between the symmetrically and asymmetrically substituted species are the enhanced two-photon absorption intensities of the former. In most of the cases studied, the molecules show reasonably large optical transition probabilities. The fluorescence brightness of these substances makes them interesting objects for two-photon absorption applications. Additionally, all molecules can be both easily reduced and oxidized electrochemically and are therefore suitable for optoelectronic applications.

Funding

Financial support from the Narodowe Centrum Nauki (SONATA bis No. 2013/10/E/ST4/00534), the TU Wien, the University of Geneva and the Swiss National Science Foundation (Project No. 200020-165890) is acknowledged. We acknowledge the use of ’Athena’ at HPC Midlands+, which was funded by the EPSRC on grant EP/P020232/1 as part of the HPC Midlands+ consortium and the use of the ’Hydra’ High Performance System at Loughborough University.

History

School

  • Science

Department

  • Chemistry

Published in

Molecular Systems Design & Engineering

Volume

4

Issue

4

Pages

951 - 961

Citation

GLOCKLHOFER, F. ... et al, 2019. Effect of symmetric and asymmetric substitution on the optoelectronic properties of 9,10-dicyanoanthracene. Molecular Systems Design & Engineering, 4 (4), pp.951-961.

Publisher

© Royal Society of Chemistry

Version

  • AM (Accepted Manuscript)

Publisher statement

This paper was accepted for publication in the journal Molecular Systems Design & Engineering and the definitive published version is available at https://doi.org/10.1039/c9me00040b.

Acceptance date

2019-06-05

Publication date

2019-06-06

ISSN

2058-9689

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC