Due to geometric scaling, the heterogeneous and anisotropic microstructures present in through-silicon vias and microbumps must be considered in the stress management of 3-D integrated circuits. In this paper, a phase field model is developed to investigate the effects of stress and electromigration on microstructural evolution in a Cu/Sn-microbump/Cu structure at 150 °C. External compressive stress is observed to accelerate the growth of Cu3Sn grains and cause the separation of continuous interfacial Cu 6 Sn 5 grains by β-Sn grains, whereas tensile stress promotes the growth of Cu 6 Sn 5 grains and the formation of a continuous Cu 6 Sn 5 layer. The roughness of the β-Sn-Cu 6 Sn 5 interface under compressive stress is greater than that under tensile stress. The morphological evolution of the β-Sn grains is also affected by stress. An external shear or compressive stress favors the growth of the β-Sn grains with their c-axis particular to the Y -direction. Furthermore, the interdiffusion flux driven by electromigration increases the roughness of the interfacial Cu 6 Sn 5 grains at the cathode. The strain caused by electromigration results in larger β-Sn grains, enabling faster interdiffusion along the current direction. The preferential growth of the β-Sn grains under stress or electromigration decreases the shear modulus of microbumps.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
IEEE Transactions on Device and Materials Reliability
Volume
14
Issue
4
Pages
995 - 1004
Citation
XIONG, H., HUANG, Z. and CONWAY, P., 2014. Effects of stress and electromigration on microstructural evolution in microbumps of three-dimensional integrated circuits. IEEE Transactions on Device and Materials Reliability, 14 (4), pp.995-1004
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/