Elastic and elastoplastic contact mechanics of concentrated coated contacts
Machines operate under increasingly harsher contact conditions, causing significant wear and contact fatigue. Sub-surface stresses are responsible for the premature contact fatigue of rolling element bearings, meshing gears, and cam–follower pairs. Surface protection measures include hard, wear-resistant coatings. Traditionally, contact integrity has been predicted using classical Herian contact mechanics. However, the theory is only applicable when the contact between a pair of ellipsoidal solids of revolution may be considered as a rigid indenter penetrating a semi-infinite elastic half-space. Many coatings act as thin bonded elastic layers that undergo considerably higher pressures than those predicted by the classical theory. Furthermore, inelastic deformation of bonded solids can cause plastic flow, work-hardening, and elastoplastic behaviour. This paper presents a comprehensive, integrated contact mechanics analysis that includes induced sub-surface stresses in concentrated counterformal finite line contacts for all the aforementioned cases. Generated pressures and deformation are predicted for hard coated surfaces, for which there is a dearth of relevant analysis. The contact characteristics, which are of particular practical significance, of many hard, wear-resistant advanced coatings are also studied. The paper clearly demonstrates the importance of using efficient semi-analytical, detailed holistic contact mechanics rather than the classical idealised methods or empirical numerical ones such as FEA. The novel approach presented for the finite line contact of thin-layered bonded solids has not hitherto been reported in the open literature No description supplied
History
School
- Mechanical, Electrical and Manufacturing Engineering
Published in
LubricantsVolume
12Issue
5Publisher
MDPI AGVersion
- VoR (Version of Record)
Rights holder
© The AuthorsPublisher statement
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Acceptance date
2024-05-03Publication date
2024-05-07Copyright date
2024ISSN
2075-4442Publisher version
Language
- en