Loughborough University
Browse

Enhancing the predictability of seasonal streamflow with a statistical-dynamical approach

Download (2.91 MB)
journal contribution
posted on 2018-06-25, 08:36 authored by Louise Slater, Gabriele Villarini
Seasonal streamflow forecasts facilitate water allocation, reservoir operation, flood risk management, and crop forecasting. They are generally computed by forcing hydrological models with outputs from general circulation models (GCMs) or using large-scale climate indices as predictors in statistical models. In contrast, hybrid statistical-dynamical forecasts (combining statistical methods with dynamical climate predictions) are still uncommon and their skill is largely unknown. Here, we conduct systematic forecasting of seasonal streamflow using eight GCMs from the North-American Multi-Model Ensemble, 0.5-9.5 months ahead, at 290 streamgauges in the U.S. Midwest. Probabilistic forecasts are developed for low to high streamflow using predictors that reflect climatic and anthropogenic influences. Results indicate that GCM forecasts of climate and antecedent climatic conditions enhance seasonal streamflow predictability; while land cover and population density predictors decrease biases or enhance skill in certain catchments. This paper paves the way for novel forecasting approaches using dynamical GCM predictions within statistical frameworks.

Funding

This study was supported in part by the Broad Agency Announcement (BAA) Program and the Engineer Research and Development Center (ERDC)–Cold Regions Research and Engineering Laboratory (CRREL) under Contract No. W913E5-16-C-0002, and by the National Science Foundation under CAREER Grant AGS-1349827.

History

Department

  • Geography and Environment

Published in

Geophysical Research Letters

Volume

45

Issue

13

Pages

6504-6513

Citation

SLATER, L. and VILLARINI, G., 2018. Enhancing the predictability of seasonal streamflow with a statistical-dynamical approach. Geophysical Research Letters, 45 (13), pp.6504-6513.

Publisher

© American Geophysical Union

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2018-06-10

Publication date

2018-07-06

Copyright date

2018

Notes

An edited version of this paper was published by AGU. Copyright 2018 American Geophysical Union. To view the published open abstract, go to https://doi.org/10.1029/2018GL077945

ISSN

0094-8276

eISSN

1944-8007

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC