This paper proposes a strategy for performing an efficient autonomous search to find an emitting source of sporadic cues of noisy information. We focus on the search for a source of unknown strength, releasing particles into the atmosphere where turbulence can cause irregular gradients and intermittent patches of sensory cues. Bayesian inference, implemented via the sequential Monte Carlo method, is used to update posterior probability distributions of the source location and strength in response to sensor measurements. Posterior sampling is then used to approximate a reward function, leading to the manoeuvre to where the entropy of the predictive distribution is the greatest. As it is developed based on the maximum entropy sampling principle, the proposed framework is termed as Entrotaxis. We compare the performance and search behaviour of Entrotaxis with the popular Infotaxis algorithm, for searching in sparse and turbulent conditions where typical gradient-based approaches become inefficient or fail. The algorithms are assessed via Monte Carlo simulations with simulated data and an experimental dataset. Whilst outperforming the Infotaxis algorithm in most of our simulated scenarios, by achieving a faster mean search time, the proposed strategy is also more computationally efficient during the decision making process.
Funding
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant number EP/K014307/1 and the MOD University Defence Research Collaboration in Signal Processing. The involvement of Dr Hyondong Oh was supported by the 2017 Research Fund (1.170013.01) of UNIST (Ulsan National Institute of Science and Technology) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03029992).
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
Information Fusion
Volume
42
Pages
179 - 189
Citation
HUTCHINSON, M., OH, H. and CHEN, W-H.,2018. Entrotaxis as a strategy for autonomous search and source reconstruction in turbulent conditions. Information Fusion, 42, pp. 179-189.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/
Acceptance date
2017-10-29
Publication date
2017-11-06
Notes
This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/