Loughborough University
Environmental impact assessment of aviation emissions reduction through the implementation of composite materials_authors preprint.pdf (381.83 kB)

Environmental impact assessment of aviation emission reduction through the implementation of composite materials

Download (381.83 kB)
journal contribution
posted on 2016-05-12, 10:00 authored by Andrew TimmisAndrew Timmis, Alma Hodzic, Lenny Koh, Michael Bonner, Constantinos Soutis, Andreas W. Schafer, Lynnette Dray
© 2014, Springer-Verlag Berlin Heidelberg. Purpose: Carbon-fibre-reinforced polymers (CFRP) have been developed by the aviation industry to reduce aircraft fuel burn and emissions of greenhouse gases. This study presents a life cycle assessment (LCA) of an all-composite airplane, based on a Boeing 787 Dreamliner. The global transition of aircraft to those of composite architecture is estimated to contribute 20–25 % of industry CO2 reduction targets. A secondary stage of the cradle-to-grave analysis expands the study from an individual aircraft to the global fleet.Methods: An LCA was undertaken utilising SimaPro 7.2 in combination with Ecoinvent. Eco-indicator 99 (E) V2.05 Europe EI 99 E/E was the chosen method to calculate the environmental impact of the inventory data. The previously developed aviation integrated model was utilised to construct a scenario analysis of the introduction of composite aircraft against a baseline projection, through to 2050, to model CO2 emissions due to their particular relevance in the aviation sector.Results and discussion: The analysis demonstrated CFRP structure results in a reduced single score environmental impact, despite the higher environmental impact in the manufacturing phase, due to the increased fossil fuel use. Of particular importance is that CFRP scenario quickly achieved a reduction in CO2 and NOx atmospheric emissions over its lifetime, due to the reduced fuel consumption. The modelled fleet-wide CO2 reduction of 14–15 % is less than the quoted emission savings of an individual aircraft (20 %) because of the limited fleet penetration by 2050 and the increased demand for air travel due to lower operating costs.Conclusions: The introduction of aircraft based on composite material architecture has significant environmental benefits over their lifetime compared to conventional aluminium-based architecture, particularly with regards to CO2 and NOx a result of reduced fuel burn. The constructed scenario analyses the interactions of technology and the markets they are applied in, expanding on the LCA, in this case, an observed fleet-wide reduction of CO2 emission of 14–15 % compared to an individual aircraft of 20 %.



  • Architecture, Building and Civil Engineering

Published in

International Journal of Life Cycle Assessment






233 - 243


TIMMIS, A. ...et al., 2015. Environmental impact assessment of aviation emission reduction through the implementation of composite materials. International Journal of Life Cycle Assessment, 20(2), pp. 233-243.


© Springer Verlag


  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date


Publication date



The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-014-0824-0.






  • en