Loughborough University
Browse
- No file added yet -

Evaluating the activity and stability of perovskite LaMO₃-based Pt catalysts in the aqueous phase reforming of glycerol

Download (5.61 MB)
journal contribution
posted on 2022-04-21, 13:38 authored by Donald Inns, Alex Mayer, Vainius Skukauskas, Thomas E Davies, June Callison, Simon KondratSimon Kondrat

The aqueous phase reforming of glycerol, to hydrogen, alkanes and liquid phase dehydration/dehydrogenation products, was studied over a series of 1 wt% Pt/LaMO3 (where M = Al, Cr, Mn, Fe, Co, Ni) catalysts and compared to a standard 1 wt% Pt/γ-Al2O3 catalyst. The sol–gel combustion synthesis of lanthanum-based perovskites LaMO3 produced pure phase perovskites with surface areas of 8–18 m2g−1. Glycerol conversions were higher than the Pt/γ-Al2O3 (10%) for several perovskite supported catalysts, with the highest being for Pt/LaNiO3 (19%). Perovskite-based catalysts showed reduced alkane formation and significantly increased lactic acid formation compared to the standard catalyst. However, most of the perovskite materials undergo phase separation to LaCO3OH and respective M site oxides with Pt particle migration. The exception being the LaCrO3 support which was found to remain structurally stable. Catalytic performance remained stable over several cycles, for catalysts M = Al, Cr and Ni, despite phase separation of some of these materials. Materials where M site leaching into solution was observed (M = Mn and Co), were found to be catalytically unstable, which was hypothesised to be due to significant loss in support surface area and uncontrolled migration of Pt to the remaining support surface. In the case of Pt/LaNiO3 alloying between the exsoluted Ni and Pt was observed post reaction.

Funding

EPSRC Centre for Doctoral Training in Fuel Cells and their Fuels - Clean Power for the 21st Century

Engineering and Physical Sciences Research Council

Find out more...

The UK Catalysis Hub -'Core'

Engineering and Physical Sciences Research Council

Find out more...

The UK Catalysis Hub - 'Science': 1 - Optimising, predicting and designing new Catalysts

Engineering and Physical Sciences Research Council

Find out more...

The UK Catalysis Hub - 'Science': 2 Catalysis at the Water-Energy Nexus

Engineering and Physical Sciences Research Council

Find out more...

Hub 'Science' 3: Catalysis for the Circular Economy and Sustainable Manufacturing

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Science

Department

  • Chemistry

Published in

Topics in Catalysis

Volume

64

Issue

17-20

Pages

992 - 1009

Publisher

Springer Science and Business Media LLC

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2021-05-07

Publication date

2021-05-19

Copyright date

2021

ISSN

1022-5528

eISSN

1572-9028

Language

  • en

Depositor

Dr Simon Kondrat. Deposit date: 20 April 2022

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC