Samples of 321 stainless steel from both the parent and welded section of a thin section tube were subjected to accelerated ageing to simulate long term service conditions in an advanced gas cooled reactor (AGR) power plant. The initial condition of the parent metal showed a duplex microstructure with approximately 50% ferrite and 50% austenite. The weld metal showed three distinct matrix phases, austenite, delta ferrite and ferrite. This result was surprising as the initial condition of the parent metal was expected to be fully austenitic and austenite+delta ferrite in the weldment. The intermetallic sigma phase formed during the accelerated ageing was imaged using ion beam induced secondary electrons then measured using computer software which gave the particle size as a function of aging time. The measurements were used to plot particle size, area coverage against aging time and minimum particle spacing for the parent metal. During aging the amount of ferrite in the parent metal actually increased from ∼50 to ∼80% after aging for 15 000 h at 750°C. Sigma has been observed to form on the austenite/ferrite boundaries as they may provide new nucleation sites for sigma phase precipitation. This has resulted in small sigma phase particles forming on the austenite/ferrite boundaries in the parent metal as the ferrite transforms from the austenite.
Funding
The authors would like to thank EDF Energy and
Loughborough University for providing the funding and
the materials for this project.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Materials
Published in
MATERIALS SCIENCE AND TECHNOLOGY
Volume
30
Issue
12
Pages
1392 - 1398 (7)
Citation
GREEN, G. ... et al, 2014. Evolution of sigma phase in 321 grade austenitic stainless steel parent and weld metal with duplex microstructure. Materials Science and Technology, 30 (12), pp. 1392 - 1398.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/