Loughborough University
Browse
Martin_et_al-2018-Physiological_Reports.pdf (661.11 kB)

Exercise during hemodialysis does not affect the phenotype or pro-thrombotic nature of microparticles but alters their pro-inflammatory function

Download (661.11 kB)
journal contribution
posted on 2018-08-14, 10:49 authored by Naomi Martin, Alice C. Smith, Maurice Dungey, Hannah M.L. Young, James O. Burton, Nicolette BishopNicolette Bishop
Hemodialysis patients have dysfunctional immune systems, chronic inflammation and comorbidity-associated risks of cardiovascular disease (CVD) and infection. Microparticles are biologically active nanovesicles shed from activated endothelial cells, immune cells, and platelets; they are elevated in hemodialysis patients and are associated with chronic inflammation and predictive of CVD mortality in this group. Exercise is advocated in hemodialysis to improve cardiovascular health yet acute exercise induces an increase in circulating microparticles in healthy populations. Therefore, this study aimed to assess acute effect of intradialytic exercise (IDE) on microparticle number and phenotype, and their ability to induce endothelial cell reactive oxygen species (ROS) in vitro. Eleven patients were studied during a routine hemodialysis session and one where they exercised in a randomized cross-over design. Microparticle number increased during hemodialysis (2064–7071 microparticles/lL, P < 0.001) as did phosphatidylserine+ (P < 0.05), platelet-derived (P < 0.01) and percentage procoagulant neutrophil-derived microparticles (P < 0.05), but this was not affected by IDE. However, microparticles collected immediately and 60 min after IDE (but not later) induced greater ROS generation from cultured endothelial cells (P < 0.05), suggesting a transient proinflammatory event. In summary IDE does not further increase prothrombotic microparticle numbers that occurs during hemodialysis. However, given acute proinflammatory responses to exercise stimulate an adaptation toward a circulating anti-inflammatory environment, microparticle-induced transient increases of endothelial cell ROS in vitro with IDE may indicate the potential for a longer-term anti-inflammatory adaptive effect. These findings provide a crucial evidence base for future studies of microparticles responses to IDE in view of the exceptionally high risk of CVD in these patients.

History

School

  • Sport, Exercise and Health Sciences

Published in

Physiological Reports

Citation

Martin, N. ... et al, 2018. Exercise during hemodialysis does not affect the phenotype or pro-thrombotic nature of microparticles but alters their pro-inflammatory function. Physiological Reports, 6(19): e13825.

Publisher

© The Authors. Published by Wiley

Version

  • NA (Not Applicable or Unknown)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

2018-07-20

Publication date

2018-10-07

Notes

This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

eISSN

2051-817X

Language

  • en