posted on 2019-01-14, 15:47authored byHui FangHui Fang, Neil Mac Parthalain, Andrew J. Aubrey, Gary K.L. Tam, Rita Borgo, Paul L. Rosin, Philip W. Grant, David Marshall, Min Chen
Automatic facial expression analysis aims to analyse human facial expressions and classify them into discrete categories. Methods based on existing
work are reliant on extracting information from video sequences and employ either some form of subjective thresholding of dynamic information or
attempt to identify the particular individual frames in which the expected
behaviour occurs. These methods are inefficient as they require either additional subjective information, tedious manual work or fail to take advantage
of the information contained in the dynamic signature from facial movements
for the task of expression recognition.
In this paper, a novel framework is proposed for automatic facial expression analysis which extracts salient information from video sequences
but does not rely on any subjective preprocessing or additional user-supplied
information to select frames with peak expressions. The experimental framework demonstrates that the proposed method outperforms static expression
recognition systems in terms of recognition rate. The approach does not rely on action units (AUs) and therefore, eliminates errors which are otherwise
propagated to the final result due to incorrect initial identification of AUs.
The proposed framework explores a parametric space of over 300 dimensions
and is tested with six state-of-the-art machine learning techniques. Such
robust and extensive experimentation provides an important foundation for
the assessment of the performance for future work. A further contribution
of the paper is offered in the form of a user study. This was conducted in
order to investigate the correlation between human cognitive systems and the
proposed framework for the understanding of human emotion classification
and the reliability of public databases.
History
School
Science
Department
Computer Science
Published in
Pattern Recognition
Volume
47
Issue
3
Pages
1271 - 1281
Citation
FANG, H. ... et al., 2014. Facial expression recognition in dynamic sequences: An integrated approach. Pattern Recognition, 47(3), pp. 1271 - 1281.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2014
Notes
This paper was accepted for publication in the journal Pattern Recognition and the definitive published version is available at https://doi.org/10.1016/j.patcog.2013.09.023