Loughborough University
Browse

Facile one-step synthesis and enhanced photocatalytic activity of WC/ferroelectric nanocomposite

Download (1.23 MB)
journal contribution
posted on 2021-08-16, 10:05 authored by Man Zhang, Yaqiong Wang, Jianguo Liu, Madasamy Thangamuthu, Yajun Yue, Zhongna Yan, Jingyu Feng, Dou Zhang, Hongtao ZhangHongtao Zhang, Shaoliang Guan, Magdalena Titirici, I. Abrahams, Junwang Tang, Zhen Zhang, Steven Dunn, Haixue Yan
The development of noble-metal-free co-catalysts is seen as a viable strategy for improving the performance of semiconductor photocatalysts. Although the photocatalytic efficiency of ferroelectrics is typically low, it can be enhanced through incorporation of co-catalyst into nanocomposites. Here, we demonstrate the influence of ferroelectricity on the decolorization of Rhodamine B under simulated solar light using RbBi2Ti2NbO10 and compared the performance with nonferroelectric RbBi2Nb5O16. The decolorization rate for RbBi2Ti2NbO10 was 5 times greater than RbBi2Nb5O16. This behaviour can be explained in terms of ferroelectric polarization, which drives separation of the charge carriers. The photocatalytic activity of the RbBi2Ti2NbO10 was further enhanced to over 30 times upon preparing nanocomposite with tungsten carbide (WC) through high energy ball milling. This enhancement was not only attributed to the increased specific surface area, but also to the incorporated WC co-catalyst which also serves as source of plasmonic hot electrons and extends the photocatalytic activity into the visible light range. The WC/RbBi2Ti2NbO10 nanocomposite shows interesting water oxidation property and evolves O2 with a rate of 68.5 µmol h-1 g -1 and the quantum yield of 3% at 420 nm. This work demonstrates a simple route for preparing WC containing nano ferroelectric composites for solar energy conversion applications.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Materials

Published in

Journal of Materials Chemistry A

Volume

9

Issue

40

Pages

22861-22870

Publisher

Royal Society of Chemistry

Version

  • VoR (Version of Record)

Publisher statement

This is an Open Access Article. It is published by Royal Society of Chemistry under the Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC). Full details of this licence are available at: https://creativecommons.org/licenses/by-nc/4.0/

Acceptance date

2021-08-12

Publication date

2021-08-13

Copyright date

2021

ISSN

2050-7488

eISSN

2050-7496

Language

  • en

Depositor

Dr Hongtao Zhang. Deposit date: 13 August 2021

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC