posted on 2023-01-03, 14:19authored byJi-Yu Tian, Zu-Min Wang, Hui FangHui Fang, Li-Ming Chen, Jing Qin, Jie Chen, Zhi-He Wang
Network intrusion detection is one of the critical techniques to enhance cybersecurity. Several few-shot learning-based methods have recently been proposed to alleviate the dependence on large training samples in many supervised learning methods. However, it is still a challenge to achieve real-time higher-accuracy intrusion detection which is an essential requirement for high-speed network security. In this study, we propose a novel few-shot learning-based network intrusion detection method to address this challenge. Specifically, we improve the detection accuracy and real-time processing speed simultaneously in the metric procedure via two mechanisms: (i) we utilize a hard sample selection scheme as a refining stage of our triplet network model training to increase the detection accuracy; and (ii) we design a lightweight embedding network and parallelize the metric feature extraction process to achieve real-time analysis speed. To evaluate the proposed method, we construct few-shot learning-based datasets by using two real and heterogeneous network traffic intrusion detection data sources. Extensive results demonstrate that our method outperforms the state-of-the-art methods in terms of real-time performance and high detection accuracy of malicious samples.
Funding
Youth Fund Project of the National Nature Fund of China under grant no. 62002038
This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.