posted on 2009-09-24, 12:41authored byG.J. Kim, Felipe Iza, Jae Koo Lee
Microplasmas with cylindrical hollow cathode have been studied by means of two-dimensional particle-in-cell/Monte-Carlo collision (PIC/MCC) simulations. For a given input power, the onset of field emission from the cathode surface caused by the strong electric field generated in these discharges leads to a reduction of the discharge voltage and an increase in plasma density. The plasma density profile can be strongly influenced by localized enhancements of the electric field, which in turn will affect the erosion profile of the cathode. The cathode erosion profile is predicted in this work by combining the ion kinetic information obtained from the PIC/MCC simulation with the sputtering yield computed using SRIM [J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM: The Stopping and Range of Ions in Matter (Lulu, Chester, 2008)]. The entrance of the cathode and the center region are the areas most susceptible to ion-induced damage. The lifetime of the device, however, can be extended by operating the device at high pressure and by reducing the operating voltage by means of field emission and/or additional electron emitting processes from the cathode
History
School
Mechanical, Electrical and Manufacturing Engineering
Citation
KIM, G.J., IZA, F. and LEE, J.K., 2009. Field emission and lifetime of microcavity plasma. Physics of Plasmas, 16(013502), 6 pp.
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in (citation of published article) and may be found at http://link.aip.org/link/?PHPAEN/16/013502/1