posted on 2022-11-10, 15:25authored byHuiming Wang, Yang Zhang, Zhenhua Zhao, Xianlun Tang, Jun YangJun Yang, I-Ming Chen
This paper proposes a robust finite-time control scheme for the high-precision tracking problem of (FJRs) with various types of unpredictable disturbances. Specifically, based on a flatness dynamic model, a finite-time disturbance observer (FTDO) with only link-side position measurements is firstly developed to estimate the lumped unknown time-varying disturbance and unmeasurable states. Then, through the information of the states and disturbances provided by the FTDO, a robust output feedback controller is constructed, which can accomplish the tasks of disturbance suppression and trajectory tracking in finite time. Moreover, a rigorous stability analysis of the closed-loop system based on a finite-time bounded (FTB) function is conducted. Finally, the simulation results validate the feasibility and superiority of the proposed control scheme against other existing control results.
Funding
Research on Compound Active Anti-interference Control of Rehabilitation Training Robot
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s11071-021-06868-4