Loughborough University
Browse

Finite element analysis of discrete edge dislocations: configurational forces and conserved integrals

Download (1.45 MB)
journal contribution
posted on 2017-08-03, 08:47 authored by Konstantinos BaxevanakisKonstantinos Baxevanakis, A.E. Giannakopoulos
We present a finite element description of Volterra dislocations using a thermal analogue and the integral representation of dislocations through stresses in the context of linear elasticity. Several analytical results are fully recovered for two dimensional edge dislocations. The full fields are reproduced for edge dislocations in isotropic and anisotropic bodies and for different configurations. Problems with dislocations in infinite medium, near free surfaces or bimaterial interfaces are studied. The efficiency of the proposed method is examined in more complex problems such as interactions of dislocations with inclusions, cracks, and multiple dislocation problems. The configurational (Peach-Koehler) force of the dislocations is calculated numerically based on energy considerations (Parks method). Some important integral conservation laws of elastostatics are considered and the connection between the material forces and the conserved integrals (J and M) is presented. The variable core model of Lubarda and Markenscoff is introduced to model the dislocation core area that is indeterminate by the classical theory.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

International Journal of Solids and Structures

Volume

62

Pages

52 - 65

Citation

BAXEVANAKIS, K.P. and GIANNAKOPOULOS, A.E., 2015. Finite element analysis of discrete edge dislocations: configurational forces and conserved integrals. International Journal of Solids and Structures, 62 pp. 52 - 65.

Publisher

© Elsevier Ltd.

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2015-02-03

Notes

This article was published in the International Journal of Solids and Structures [© Elsevier Ltd.] and the definitive version is available at: https://doi.org/10.1016/j.ijsolstr.2015.01.025

ISSN

0020-7683

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC