Loughborough University
Browse

Fracture behaviour and toughening mechanisms of dry and wet collagen

Download (2.92 MB)
journal contribution
posted on 2022-05-09, 15:04 authored by Shirsha Bose, Simin LiSimin Li, Elisa MeleElisa Mele, Vadim SilberschmidtVadim Silberschmidt
The growing interest to the use of collagen films for biomedical applications motivates the analysis of their fracture behaviour in different environments. Studies revealed the decreased mechanical strength and stiffness as well as increased plasticity in water compared to collagen specimens tested in air. However, the fracture behaviour of pure collagen films in both air and water has not been reported so far. In this paper, the entire process of mode-I loading of single-edge notched tension (SENT) specimens was recorded and analysed. In case of in-air (dry) specimens, cracks propagated rapidly in a brittle fashion while large plastic deformations were observed in aqua prior to failure due to crack opening and a blunting mechanism in wet specimens. The fracture-toughness parameters for pure collagen in air and in aqua were estimated using linear-elastic (KI and GI) and elasto-plastic (JI) fracture-mechanics approaches, respectively, following the force-displacement response and deformational behaviour. GIC and JI were 1365 ± 112 J/m2 and 2500 ± 440 J/m2, respectively. Scanning electron microscopy was used to observe the structural changes linked to collagen fibrils in the crack-tip area and the fracture surface. For in-air specimens, the former mostly exhibited extrinsic toughening (usually at micro scale) acting behind the crack-tip, while in-aqua intrinsic toughening acting ahead of a crack tip was found. Fractography of in-air specimens showed no occurrence of voids while multiple micro-voids were found for in-aqua specimens. Statement of significance: The fracture toughness and crack propagation of both mineralised (bone, dentine) and non-mineralised (skin) tissues has been extensively investigated over the past decades. Though these tissues are rich in collagen, the fracture properties of pure collagen have not been quantified yet at macroscale. Considering the applications of collagen films in tissue regeneration, it is essential to perform investigations of their fracture behaviour in both dry and wet conditions. Determining the effect of environment on the fracture behaviour of collagen and understanding its toughening mechanism are essential for prevention of failures during application. Moreover, this would give an insight for fabrication of tougher collagen-based biomaterials for biomedical uses.

Funding

Government of the Russian Federation under the mega-grant program, contract no. 075-15-2021-578, 31 May 2021, hosted by Perm National Research Polytechnic University

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering
  • Mechanical, Electrical and Manufacturing Engineering

Department

  • Materials

Published in

Acta Biomaterialia

Volume

142

Pages

174 - 184

Publisher

Elsevier

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2022-02-02

Publication date

2022-02-05

Copyright date

2022

ISSN

1742-7061

eISSN

1878-7568

Language

  • en

Depositor

Prof Vadim Silberschmidt. Deposit date: 25 March 2022

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC