Gaudin_subalgebras_final.pdf (389.2 kB)
Download fileGaudin subalgebras and stable rational curves
journal contribution
posted on 2014-07-16, 15:53 authored by Leonardo Aguirre, G. Felder, Alexander VeselovAlexander VeselovGaudin subalgebras are abelian Lie subalgebras of maximal dimension spanned by generators of the Kohno-Drinfeld Lie algebra tn. We show that Gaudin subalgebras form a variety isomorphic to the moduli space M 0;n+1 of stable curves of genus zero with n+1 marked points. In particular, this gives an embedding of M 0;n+1 in a Grassmannian of (n-1)-planes in an n(n-1)=2-dimensional space. We show that the sheaf of Gaudin subalgebras over M 0;n+1 is isomorphic to a sheaf of twisted first order differential operators. For each representation of the Kohno-Drinfeld Lie algebra with fixed central character, we obtain a sheaf of commutative algebras whose spectrum is a coisotropic subscheme of a twisted version of the logarithmic cotangent bundle of M
0;n+1.
History
School
- Science
Department
- Mathematical Sciences
Published in
COMPOSITIO MATHEMATICAVolume
147Issue
5Pages
1463 - 1478 (16)Citation
AGUIRRE, L., FELDER, G. and VESELOV, A.P., 2011. Gaudin subalgebras and stable rational curves. Compositio Mathematica, 147 (5), pp. 1463-1478.Publisher
Cambridge University Press (© Foundation Compositio Mathematica)Version
- AM (Accepted Manuscript)
Publication date
2011Notes
The pubished version of this article is available at: http://dx.doi.org/10.1112/S0010437X11005306.ISSN
0010-437XeISSN
1570-5846Publisher version
Language
- en