The relative permittivity (εr) and the electrical conductivity (σ) of porous media are known to be functions of water saturation (S). As such, their measurements can be useful in effective characterisations and monitoring of geological carbon sequestration using geoelectrical measurement techniques. In this work, the effects of pressure, temperature and salt concentration on bulk εr–S and σ–S relationships were investigated for carbonate (limestone) and silicate porous media (both unconsolidated domains) under dynamic and quasi-static supercritical CO2 (scCO2)-brine/water flow. In the silica sand sample, the bulk εr (εb) for scCO2–water decreases as the temperature increases. On the contrary, slight increase was seen in the εb with temperature in the carbonate sample for the scCO2-water system. These trends are more conspicuous at high water saturation. The εb–S curves for the scCO2–water flow in the silica sand also show clear dependency on the domain pressure, where εb increases as the domain pressure increases. Furthermore, the bulk σ (σb), at any particular saturation for the scCO2-brine system rises as the temperature increases with more significant increase found at very high water saturation. Both εb and σb values are found to be greater in the limestone than silica sand porous samples for similar porosity values. Based on different injection rates investigated, we do not find significant dynamic effects in the εb–S and σb–S relationships for the scCO2-brine/water system. As such, geoelectrical characteristics can be taken as reliable in the monitoring of two-phase flow system in the porous media. It can be inferred from the results that the geoelectrical techniques are highly dependent on water saturation. This dependence is more conspicuous at higher water saturation. Different mathematical models examined show their reliability at different water saturation ranges. The polynomial fit developed in this work takes into consideration the fluid pressure in the system as well as the initial bulk relative permittivity prior to the injection of CO2. The polynomial fit shows a good reliability in the prediction of the geo-electrical properties of the CO2–water–porous media system, especially at higher water saturation. In comparison, the mixing model from the literature shows more reliability in the prediction of similar property at lower water saturation.
Funding
PhD studentship awarded to Mr Luqman Abidoye under the Petroleum Technology Development Fund (PTDF), Nigeria, to carry out the work in this paper is much appreciated.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Geophysical Journal International
Volume
203
Issue
1
Pages
79 - 91
Citation
ABIDOYE, L.K. and DAS, D.B., 2015. Geoelectrical characterization of carbonate and silicate porous media in the presence of supercritical CO2-water flow. Geophysical Journal International, 203 (1), pp. 79-91.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/