posted on 2017-02-16, 14:01authored byJianglong Guo, Thomas Bamber, T. Hovell, Matthew Chamberlain, Laura JusthamLaura Justham, Michael R. Jackson
A systematic research methodology for the performance evaluation of different electroadhesive pad geometries is demonstrated in this paper. The proposed research method for the investigation was based on a 3D electrostatic simulation using COMSOL Multiphysics, a cost-effective electroadhesive pad design and manufacturing process based on solid-ink printing, chemical etching, conformal coating, and an advanced and mechatronic electroadhesive force testing platform and procedure. The method has been validated using 2 novel pad designs, approximate 21 cm x 19 cm, compared with the normal comb design, on the glass and aluminium plate. The experimental results showed that: 1) on the glass substrate, a relative increase of 1% and 28% in the electroadhesive forces obtainable can be seen in the curve-comb pad and the worm-comb pad respectively; and 2) on the Al substrate, a relative increase of 5% and 12% can be seen. This manifests that the two new pad designs, especially the worm-comb shape design, are better at generating larger electroadhesive forces. The comparison between the simulation results and experimental results proved that proposed method is promising for evaluating the pad design before spending time and money on pad manufacture and testing.
Funding
This work was supported by the EPSRC Centre
for Innovative Manufacturing in Intelligent Automation, in undertaking this research work under grant reference number EP/IO33467/1.
History
School
Mechanical, Electrical and Manufacturing Engineering
Published in
IFAC-PapersOnLine
Volume
49
Issue
21
Pages
309 - 315
Citation
GUO, J. ...et al., 2016. Geometric optimisation of electroadhesive actuators based on 3D electrostatic simulation and its experimental verification. IFAC-PapersOnLine, 49(21), pp. 309-315.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2016-11-10
Copyright date
2016
Notes
This paper was accepted for publication in the journal IFAC-PapersOnLine and the definitive published version is available at http://dx.doi.org/10.1016/j.ifacol.2016.10.574