## Gröbner bases and products of coefficient rings

Suppose that A is a finite direct product of commutative rings. We show from first principles
that a Gröbner basis for an ideal of A[x1,..., xn] can be easily obtained by ’joining’
Gröbner bases of the projected ideals with coefficients in the factors of A (which can themselves be obtained in parallel). Similarly for strong Gröbner bases. This gives an elementary method of constructing a (strong) Gröbner basis when the Chinese Remainder Theorem applies to the coefficient ring and we know how to compute (strong) Gröbner bases in each factor.

### History

#### School

- Science

#### Department

- Computer Science