Product inhibition and the cost of downstream separations are two main barriers in using lignocellulosic biomass for bioethanol production. If bioethanol can be continuously removed from fermentation broth without affecting the fermentation process, significant gains can be achieved with bioethanol yields and process efficiency. Hot microbubble clouds generated by energy efficient means have been used to remove ethanol from dilute ethanol-water mixtures (~4% [v/v]) maintained at 60oC, and the effect of key operating parameters on the stripping rate has been studied. Numerical simulations of a hot microbubble rising in a dilute ethanol-water mixture was also performed to understand the instantaneous concentrations within the gas phase. Increasing the inlet gas temperature from 90oC to 150oC and decreasing the liquid height in the unit from 50 mm to 5 mm both increased the ethanol stripping rate. However, the benefit of increasing the gas temperature for maximum ethanol removal depended on the liquid height in the unit. Under all operating conditions, ethanol concentration was reduced below ~2% [v/v] within ~25 minutes of operation, demonstrating the potential of hot microbubble stripping for product removal from lignocellulosic fermenters. Implemented effectively in a fermenter, this technology could intensify the bioethanol production process and improve process economics.
Funding
BBSRC and Innovate UK for funding (ISCF Wave 1 IB-BB/S005285/1).
DTP - Loughborough University
Engineering and Physical Sciences Research Council