posted on 2021-12-21, 13:40authored byDa Li, Hao Zhang, Hang Xiang, Shahid Rasul, Jean-Marie Fontmorin, Paniz Izadi, Alberto Roldan, Rebecca Taylor, Yujie Feng, Liam Banerji, Alexander Cowan, Eileen YuEileen Yu, Jin Xuan
The electrochemical reduction of CO2to produce fuels and value-added organic chemicals is of great potential, providing a mechanism to convert and store renewable energy within a carbon-neutral energy circle. Currently the majority of studies report C1products such as carbon monoxide and formate as the major CO2reduction products. A particularly challenging goal within CO2electrochemical reduction is the pursuit of multi-carbon (C2+) products which have been proposed to enable a more economically viable value chain. This review summaries recent development across electro-, photoelectro- and bioelectro-catalyst developments. It also explores the role of device design and operating conditions in enabling C-C bond generation.
Funding
UKRI Interdisciplinary Centre for Circular Chemical Economy
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Sustainable Energy and Fuels
Volume
5
Issue
23
Pages
5893 - 5914
Publisher
Royal Society of Chemistry
Version
VoR (Version of Record)
Publisher statement
This is an Open Access Article. It is published by Royal Society of Chemistry under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/