Hybrid forecasting: blending climate predictions with AI models
Hybrid hydroclimatic forecasting systems employ data-driven (statistical or machine learning) methods to harness and integrate a broad variety of predictions from dynamical, physics-based models – such as numerical weather prediction, climate, land, hydrology, and Earth system models – into a final prediction product. They are recognized as a promising way of enhancing the prediction skill of meteorological and hydroclimatic variables and events, including rainfall, temperature, streamflow, floods, droughts, tropical cyclones, or atmospheric rivers. Hybrid forecasting methods are now receiving growing attention due to advances in weather and climate prediction systems at subseasonal to decadal scales, a better appreciation of the strengths of AI, and expanding access to computational resources and methods. Such systems are attractive because they may avoid the need to run a computationally expensive offline land model, can minimize the effect of biases that exist within dynamical outputs, benefit from the strengths of machine learning, and can learn from large datasets, while combining different sources of predictability with varying time horizons. Here we review recent developments in hybrid hydroclimatic forecasting and outline key challenges and opportunities for further research. These include obtaining physically explainable results, assimilating human influences from novel data sources, integrating new ensemble techniques to improve predictive skill, creating seamless prediction schemes that merge short to long lead times, incorporating initial land surface and ocean/ice conditions, acknowledging spatial variability in landscape and atmospheric forcing, and increasing the operational uptake of hybrid prediction schemes.
Funding
THE EVOLUTION OF GLOBAL FLOOD HAZARD AND RISK [EVOFLOOD]
Natural Environment Research Council
Find out more...Swiss Federal Institute for Forest, Snow and Landscape Research (MaLeFix; Extremes)
Canada First Research Excellence Fund (Global Water Futures programme)
U.S. Army Corps of Engineers (USACE Institute for Water Resources)
Science Foundation Ireland (grant no. SFI/17/CDA/4783)
History
School
- Social Sciences and Humanities
Department
- Geography and Environment
Published in
Hydrology and Earth System SciencesVolume
27Issue
9Pages
1865 - 1889Publisher
Copernicus PublicationsVersion
- VoR (Version of Record)
Rights holder
© AuthorsPublisher statement
This is an Open Access Article. It is published by Copernicus Publications under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2023-04-09Publication date
2023-05-15Copyright date
2023ISSN
1027-5606eISSN
1607-7938Publisher version
Language
- en