Loughborough University
Browse
Revised manuscript.pdf (4.49 MB)
Download file

Hybrid interpretable predictive machine learning model for air pollution prediction

Download (4.49 MB)
journal contribution
posted on 2021-10-28, 08:44 authored by Yuanlin Gu, Baihua LiBaihua Li, Qinggang MengQinggang Meng
Air pollution prediction is a burning issue, as pollutants can harm human health. Traditional machine learning models usually aim to improve the overall prediction accuracy but neglect the accuracy for peak values. Moreover, these models are not interpretable. They fail to explain the interactions between various determining factors and their impacts on air pollution. In this paper, we propose a new Hybrid Interpretable Predictive Machine Learning model for the Particulate Matter 2.5 prediction, which carries two novelties. First, a hybrid model structure is constructed with deep neural network and Nonlinear Auto Regressive Moving Average with Exogenous Input model. Second, automatic feature generation and feature selection procedures are integrated into this hybrid model. The experimental results demonstrate the superiority of our model over other models in prediction accuracy for peak values and model interpretability. The proposed model reveals how PM2.5 prediction is estimated by historical PM2.5, weather, and season. The accuracies (measured by correlation coefficients) of 1, 3 and 6-hour-ahead prediction are 0.9870, 0.9332 and 0.8587, respectively. More importantly, the proposed approach presents a new interpretable machine learning framework for time series data, enabling to explain complex dependence of multimode inputs, and to build reliable predictive models.

Funding

Newton Fund under grant reference 104314

History

School

  • Science

Department

  • Computer Science

Published in

Neurocomputing

Volume

468

Pages

123 - 136

Publisher

Elsevier BV

Version

  • AM (Accepted Manuscript)

Rights holder

© Elsevier

Publisher statement

This paper was accepted for publication in the journal Neurocomputing and the definitive published version is available at https://doi.org/10.1016/j.neucom.2021.09.051.

Acceptance date

2021-09-25

Publication date

2021-10-06

Copyright date

2021

ISSN

0925-2312

Language

  • en

Depositor

Prof Qinggang Meng. Deposit date: 27 October 2021

Usage metrics

    Categories

    No categories selected

    Exports