posted on 2019-02-06, 10:04authored byDavide Vettori, Vladimir Nikora
Vegetation surrogates have been extensively used in laboratory experiments for studying flow-vegetation interactions. However, it remains unclear how accurately the surrogates replicate the prototype vegetation in terms of hydrodynamic performance, even when similarity conditions are followed. To address this matter, we compare the hydrodynamic performance of seaweed blades of the species Saccharina latissima with performance of their surrogates, which were designed based on similarity considerations. To assess the hydrodynamic performance of samples, we measured flow velocities upstream and downstream of the samples, their vertical movements, and the drag forces exerted on them. The obtained data reveal that the mechanisms governing flow-blade interactions are essentially the same for live blades and their surrogates. Even though the surrogates successfully replicate many aspects of live blade dynamics, they experience weaker drag force and reconfiguration, likely because of their simplified morphologies that differed from the live blades at small scales. To enhance similarity in hydrodynamic performances, we suggest employing comprehensive similarity conditions at all relevant scales.
Funding
The work described in this publication was undertaken during the Ph.D. study of Davide Vettori at the University of Aberdeen funded by a scholarship from the Northern Research Partnership, Scotland.
History
School
Social Sciences
Department
Geography and Environment
Published in
Journal of Hydraulic Research
Volume
58
Issue
2
Pages
248 - 261
Citation
VETTORI, D. and NIKORA, V., 2019. Hydrodynamic performance of vegetation surrogates in hydraulic studies: a comparative analysis of seaweed blades and their physical models. Journal of Hydraulic Research, 58 (2), pp.248-261.
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Hydraulic Research on 11 March 2019, available online: http://www.tandfonline.com/10.1080/00221686.2018.1562999.