Loughborough University
Browse
- No file added yet -

Impact and observations of cylinder deactivation and reactivation in a downsized gasoline turbocharged direct injection engine

Download (1.93 MB)
journal contribution
posted on 2019-10-08, 08:31 authored by Matthew Parker, Changzhao Jiang, Daniel ButcherDaniel Butcher, Adrian SpencerAdrian Spencer, Colin GarnerColin Garner, Dennis Witt
Cylinder deactivation, sometimes referred to as Variable Displacement Engine (VDE) technology, is a method being employed in state-of-the-art reciprocating engines to improve fuel economy. The approach involves disabling the valve actuation of one or more cylinders to deactivate them, thus forcing the engine to operate at a higher specific load across the remaining cylinders to produce the torque demanded. Operating at such a point with an increased throttle opening reduces the engine’s pumping losses and hence reduces fuel consumption. In this work, the spray morphology, combustion and emissions of a three-cylinder downsized gasoline turbocharged direct injection (GTDI) engine with VDE capability on one cylinder were studied. This investigation allowed the interaction between the fuel spray, engine performance and emissions immediately following the reactivation of the deactivated cylinder to be better understood. Three operation modes were examined which included running the engine at full displacement, at the reduced displacement and at full displacement with increased indicated mean effective pressure (IMEP), matching that of the reduced displacement mode. The study showed that cylinder deactivation significantly reduced specific fuel consumption at the conditions tested in comparison to full displacement operation. It was also found that when running the engine at full displacement but with the reduced displacement level IMEP, the specific fuel consumption was greater than for reduced displacement operation. In addition, it was observed that particulate number (PN) emissions increase transiently during the deactivation period due the disturbances to the fuelling control caused by displacement transitions. Improved fuelling control, refinement of the engine calibration during reduced displacement operation or a Gasoline Particulate Filter (GPF) could be used to manage this PN level.

Funding

TSB/APC project number 101891

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

International Journal of Engine Research

Volume

22

Issue

4

Pages

1367-1376

Publisher

SAGE Publications

Version

  • AM (Accepted Manuscript)

Rights holder

© IMechE

Publisher statement

Users who receive access to an article through a repository are reminded that the article is protected by copyright and reuse is restricted to non-commercial and no derivative uses. Users may also download and save a local copy of an article accessed in an institutional repository for the user's personal reference. For permission to reuse an article, please follow our Process for Requesting Permission. This paper was accepted for publication in the journal International Journal of Engine Research and the definitive published version is available at https://doi.org/10.1177/1468087419882817.

Acceptance date

2019-09-19

Publication date

2019-10-21

Copyright date

2021

ISSN

1468-0874

eISSN

2041-3149

Language

  • en

Depositor

Dr Daniel Butcher

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC