Loughborough University
Tolfrey_nutrients-08-00393.pdf (564.71 kB)
Download file

Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users

Download (564.71 kB)
journal contribution
posted on 2016-08-12, 10:27 authored by Terri Graham, Claudio Perret, Vicky Goosey-TolfreyVicky Goosey-Tolfrey
Caffeine supplementation during whole-/lower-body exercise is well-researched, yet evidence of its effect during upper-body exercise is equivocal. The current study explored the effects of caffeine on cycling/handcycling 10 km time trial (TT) performance in habitual caffeine users. Eleven recreationally trained males (mean (SD) age 24 (4) years, body mass 85.1 (14.6) kg, cycling/handcycling peak oxygen uptake (V peak) 42.9 (7.3)/27.6 (5.1) mL·kg·min−1, 160 (168) mg/day caffeine consumption) completed two maximal incremental tests and two familiarization sessions. During four subsequent visits, participants cycled/handcycled for 30 min at 65% mode-specific V peak (preload) followed by a 10 km TT following the ingestion of 4 mg·kg−1 caffeine (CAF) or placebo (PLA). Caffeine significantly improved cycling (2.0 (2.0)%; 16:35 vs. 16:56 min; p = 0.033) but not handcycling (1.8 (3.0)%; 24:10 vs. 24:36 min; p = 0.153) TT performance compared to PLA. The improvement during cycling can be attributed to the increased power output during the first and last 2 km during CAF. Higher blood lactate concentration (Bla) was reported during CAF compared to PLA (p < 0.007) and was evident 5 min post-TT during cycling (11.2 ± 2.6 and 8.8 ± 3.2 mmol/L; p = 0.001) and handcycling (10.6 ± 2.5 and 9.2 ± 2.9 mmol/L; p = 0.006). Lower overall ratings of perceived exertion (RPE) were seen following CAF during the preload (p < 0.05) but not post-TT. Lower peripheral RPE were reported at 20 min during cycling and at 30 min during handcycling, and lower central RPE was seen at 30 min during cycling (p < 0.05). Caffeine improved cycling but not handcycling TT performance. The lack of improvement during handcycling may be due to the smaller active muscle mass, elevated (Bla) and/or participants’ training status.



  • Sport, Exercise and Health Sciences

Published in







GRAHAM-PAULSON, T.S., PERRET, C. and GOOSEY-TOLFREY, V.L., 2016. Improvements in cycling but not handcycling 10 km time trial performance in habitual caffeine users. Nutrients, 8, 393, doi:10.3390/nu8070393.


© The Authors. Published by MDPI.


  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date


Publication date


Copyright date



This is an Open Access Article. It is published by MDPI under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/




  • en