Equal cost multiple path (ECMP) forwarding is the most prevalent multipath routing used in data center (DC) networks today. However, it fails to exploit increased path diversity that can be provided by traffic engineering techniques through the assignment of nonuniform link weights to optimize network resource usage. To this extent, constructing a routing algorithm that provides path diversity over nonuniform link weights (i.e., unequal cost links), simplicity in path discovery and optimality in minimizing maximum link utilization (MLU) is nontrivial. In this paper, we have implemented and evaluated the Penalizing Exponential Flow-spliTing (PEFT) algorithm in a cloud DC environment based on two dominant topologies, canonical and fat tree. In addition, we have proposed a new cloud DC topology which, with only a marginal modification of the current canonical tree DC architecture, can further reduce MLU and increase overall network capacity utilization through PEFT routing.
History
School
Science
Department
Computer Science
Published in
IEEE Transactions on Parallel & Distributed Systems
Citation
TSO, F.P. and PEZAROS, D.P., 2012. Improving data center network utilization using near-optimal traffic engineering. IEEE Transactions on Parallel and Distributed Systems, 24 (6), pp.1139-1148.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/