Loughborough University
Browse
- No file added yet -

In-plane and out-of-plane elastodynamics of thin rings and seals

Download (1.23 MB)
journal contribution
posted on 2019-05-31, 13:18 authored by Rob Turnbull, Ramin RahmaniRamin Rahmani, Homer Rahnejat
Thin curved rings used mostly as seals, including in internal combustion engines undergo complex elastodynamic behavior when subjected to a combination of normal radial loading and tangential shear with friction. In turn, their complex modal behavior often results in loss of sealing, increased friction, and power loss. This paper presents a new finite difference approach to determine the response of thin incomplete circular rings. Two interchangeable approaches are presented; one embedding mass and stiffness components in a unified frequency-dependent matrix, and the other making use of equivalent mass and stiffness matrices for the ring structure. The versatility of the developed finite difference formulation can also allow for efficient modification to account for multiple dynamically changing ring support locations around its structure. Very good agreement is observed between the numerical predictions and experimental measurements, particularly with new precision noncontact measurements using laser Doppler vibrometry. The influence of geometric parameters on the frequency response of a high performance motorsport engine’s piston compression ring demonstrates the degree of importance of various geometrical parameters on ring dynamic response.

Funding

Engineering and Physical Sciences Research Council (EPSRC) (EP/L014998/1; Funder ID: 10.13039/ 501100000266).

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Journal of Computational and Nonlinear Dynamics

Volume

14

Issue

8

Pages

081006 - 081006

Citation

TURNBULL, R., RAHMANI, R. and RAHNEJAT, H., 2019. In-plane and out-of-plane elastodynamics of thin rings and seals. Journal of Computational and Nonlinear Dynamics, 14(8): 081006.

Publisher

© ASME International

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/

Acceptance date

2019-04-11

Publication date

2019-05-13

Notes

This is an Open Access Article. It is published by Asme under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

ISSN

1555-1415

Language

  • en