In situ synthesis of star copolymers consisting of a polyhedral oligomeric silsesquioxane core and poly(2,5-benzimidazole) arms for high-temperature proton exchange membrane fuel cells
posted on 2020-06-12, 14:59authored byTao Li, Fang Luo, Xudong Fu, Lanxin Li, Jiayuan Min, Rong Zhang, Shengfei Hu, Feng Zhao, Xiao Li, Yanhua Zhang, Xujin BaoXujin Bao, Qingting Liu
Star copolymers with good film-forming and mechanical properties were in situ synthesized for fabricating proton exchange membranes. The monomers of 3,4-diaminobenzoic acid were first grafted onto glycidyl-polyhedral oligomeric silsesquioxane (G-POSS) cores and then propagated to the poly(2,5-benzimidazole) (ABPBI) chains. The introduction of the star copolymer improves the movement of the ABPBI polymer chains, resulting in a lower internal viscosity and larger free volume that favor increased membrane flatness and absorbilities of water and phosphoric acid molecules, respectively. It was found that the star copolymers with 1.0 wt% of incorporated POSS (ABPBI-1.0POSS) had the best balance of the acid retentivity and film-forming property as well as mechanical properties that are desirable for proton exchange membranes without PA loss operating at high temperatures. The enhanced cell performance characteristics obtained using the ABPBI-1.0POSS-based membranes indicate that star copolymers are promising materials for use in high-temperature proton exchange membrane fuel cells.
Funding
National Natural Science Foundation of China (NSFC). Grant Numbers: 21905083, 51902096
Hubei Provincial R&D Foundation. Grant Numbers: 2018CFB412, 201906A07, 2019CFB304
National Natural Science Foundation of China. Grant Numbers: 51902096, 21905083
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
This is the peer reviewed version of the following article: LI, T. ... et al., 2020. In situ synthesis of star copolymers consisting of a polyhedral oligomeric silsesquioxane core and poly(2,5‐benzimidazole) arms for high‐temperature proton exchange membrane fuel cells. International Journal of Energy Research, 44 (11), pp.8769-8780, which has been published in final form at https://doi.org/10.1002/er.5571. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.