Loughborough University
Browse

Indicators to assess physiological heat strain – Part 3: Multi-country field evaluation and consensus recommendations

Download (2.28 MB)
journal contribution
posted on 2022-04-05, 09:10 authored by Leonidas G Ioannou, Lydia Tsoutsoubi, Konstantinos Mantzios, Maria Vliora, Eleni Nintou, Jacob F Piil, Sean R Notley, Petros C Dinas, George A Gourzoulidis, George HavenithGeorge Havenith, Matt Brearley, Igor B Mekjavic, Glen P Kenny, Lars Nybo, Andreas D Flouris
In a series of three companion papers published in this Journal, we identify and validate the available thermal stress indicators (TSIs). In this third paper, we conducted field experiments across nine countries to evaluate the efficacy of 61 meteorology-based TSIs for assessing the physiological strain experienced by individuals working in the heat. We monitored 372 experi-enced and acclimatized workers during 893 full work shifts. We continuously assessed core body temperature, mean skin temperature, and heart rate data together with pre/post urine specific gravity and color. The TSIs were evaluated against 17 published criteria covering physiological parameters, practicality, cost effectiveness, and health guidance issues. Simple meteorological parameters explained only a fraction of the variance in physiological heat strain (R2 = 0.016 to 0.427; p < 0.001), reflecting the importance of adopting more sophisticated TSIs. Nearly all TSIs correlated with mean skin temperature (98%), mean body temperature (97%), and heart rate (92%), while 66% of TSIs correlated with the magnitude of dehydration and 59% correlated with core body temperature (r = 0.031 to 0.602; p < 0.05). When evaluated against the 17 published criteria, the TSIs scored from 4.7 to 55.4% (max score = 100%). The indoor (55.4%) and outdoor (55.1%) Wet-Bulb Globe Temperature and the Universal Thermal Climate Index (51.7%) scored higher compared to other TSIs (4.7 to 42.0%). Therefore, these three TSIs have the highest potential to assess the physiological strain experienced by individuals working in the heat.

Funding

Horizon 2020 [668786]; International Labour Organisation [40262271/1]

European Union’s Horizon 2020 research and innovation programme (project HEAT-SHIELD; Grant agreement No 668786)

History

School

  • Design and Creative Arts

Department

  • Design

Published in

Temperature

Publisher

Taylor & Francis

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Taylor & Francis under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (CC BY-NC-ND 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

2022-02-16

Publication date

2022-04-01

Copyright date

2022

ISSN

2332-8940

eISSN

2332-8959

Language

  • en

Depositor

Prof George Havenith. Deposit date: 4 April 2022

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC