Industrial energy optimisation: a laser cutting case study
In an increasingly technological world, energy efficiency in manufacturing is of great importance. While large manufacturing corporations have the resources to commission energy studies with minimal impact on operations, this is not true for small and medium enterprises (SME’s). These businesses will commonly only have a small number of laser processing cells; thus, to carry out an energy study can be extremely disruptive to normal operations. Since rising global energy costs also have the largest impact on small businesses who lack the benefit of economies of scale, they are simultaneously the most in need of improvements to energy efficiency, while also facing the strongest practical barriers to implementing them. In this study, a laser processing energy analysis methodology was designed to run simultaneously with normal operation and applied to a laser shim-cutting cell in a UK-based SME. This paper demonstrates the methodology for identifying operating states in a production environment and Specific Energy Consumption and Scope 2 CO2 emissions results are analysed. The Processing state itself was the most impactful on overall energy performance, at 55% for single sheets of material, increasing to 71% when batch processing. Generating idealised data in this production environment is challenging with restrictions to isolating variables, these “real-world” limitations for conducting system energy analysis simultaneously with live production are also discussed to present recommendations for further analysis.
Funding
Research on the theory and key technology of laser processing and system optimisation for low carbon manufacturing (LASER-BEAMS)
Engineering and Physical Sciences Research Council
Find out more...History
School
- Mechanical, Electrical and Manufacturing Engineering
Published in
International Journal of Precision Engineering and Manufacturing-Green TechnologyPublisher
SpringerVersion
- VoR (Version of Record)
Rights holder
© The Author(s)Publisher statement
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Acceptance date
2023-09-01Publication date
2023-09-28Copyright date
2023ISSN
2288-6206eISSN
2198-0810Publisher version
Language
- en