Loughborough University
Browse

Industrial energy optimisation: a laser cutting case study

Download (2.87 MB)
journal contribution
posted on 2023-10-16, 11:33 authored by Nick Goffin, Lewis JonesLewis Jones, John TyrerJohn Tyrer, Jinglei Ouyang, Paul Mativenga, Lin Li, Elliot WoolleyElliot Woolley

In an increasingly technological world, energy efficiency in manufacturing is of great importance. While large manufacturing corporations have the resources to commission energy studies with minimal impact on operations, this is not true for small and medium enterprises (SME’s). These businesses will commonly only have a small number of laser processing cells; thus, to carry out an energy study can be extremely disruptive to normal operations. Since rising global energy costs also have the largest impact on small businesses who lack the benefit of economies of scale, they are simultaneously the most in need of improvements to energy efficiency, while also facing the strongest practical barriers to implementing them. In this study, a laser processing energy analysis methodology was designed to run simultaneously with normal operation and applied to a laser shim-cutting cell in a UK-based SME. This paper demonstrates the methodology for identifying operating states in a production environment and Specific Energy Consumption and Scope 2 CO2 emissions results are analysed. The Processing state itself was the most impactful on overall energy performance, at 55% for single sheets of material, increasing to 71% when batch processing. Generating idealised data in this production environment is challenging with restrictions to isolating variables, these “real-world” limitations for conducting system energy analysis simultaneously with live production are also discussed to present recommendations for further analysis.

Funding

Research on the theory and key technology of laser processing and system optimisation for low carbon manufacturing (LASER-BEAMS)

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

International Journal of Precision Engineering and Manufacturing-Green Technology

Publisher

Springer

Version

  • VoR (Version of Record)

Rights holder

© The Author(s)

Publisher statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Acceptance date

2023-09-01

Publication date

2023-09-28

Copyright date

2023

ISSN

2288-6206

eISSN

2198-0810

Language

  • en

Depositor

Dr Lewis Jones. Deposit date: 30 August 2023

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC