- No file added yet -
Inert gas bubble formation in magnetron sputtered thin-film CdTe solar cells
journal contribution
posted on 2020-11-10, 11:20 authored by Peter Hatton, Ali AbbasAli Abbas, Piotr Kaminski, Sibel Yilmaz, Michael Watts, Michael WallsMichael Walls, Pooja GoddardPooja Goddard, Roger Smith© 2020 The Authors. Cadmium telluride (CdTe) solar cells are deposited in current production using evaporation-based tech- niques. Fabricating CdTe solar cells using magnetron sputtering would have the advantage of being more cost-efficient. Here, we show that such deposition results in the incorporation of the magnetron working gas Ar, within the films. Post deposition processing with CdCl 2 improves cell efficiency and during which stacking faults are removed. The Ar then accumulates into clusters leading to the creation of voids and blisters on the surface. Using molecular dynamics, the penetration threshold energies are determined for both Ar and Xe, with CdTe in both zinc-blende and wurtzite phases. These calculations show that more Ar than Xe can penetrate into the growing film with most penetration across the (111) surface. The mechanisms and energy barriers for interstitial Ar and Xe diffusion in zinc-blende are determined. Barriers are reduced near existing clusters, increasing the probability of capture-based cluster growth. Barriers in wurtzite are higher with non-Arrhenius behaviour observed. This provides an explanation for the increase in the size of voids observed after stacking fault removal. Blister exfoliation was also modelled, showing the formation of shallow craters with a raised rim.
Funding
History
School
- Science
- Mechanical, Electrical and Manufacturing Engineering
Department
- Chemistry
Research Unit
- Centre for Renewable Energy Systems Technology (CREST)
Published in
Proceedings of the Royal Society A: Mathematical, Physical and Engineering SciencesVolume
476Issue
2239Publisher
Royal SocietyVersion
- VoR (Version of Record)
Rights holder
© The authorsPublisher statement
This is an Open Access Article. It is published by Royal Society under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Acceptance date
2020-06-24Publication date
2020-07-29Copyright date
2020ISSN
1364-5021eISSN
1471-2946Publisher version
Language
- en
Depositor
Prof Michael Walls Deposit date: 9 November 2020Article number
20200056Usage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC