To determine the optimal crank length and crank-axle height for maximum power
production during standing arm-cranking (‘grinding’). Nine elite professional America’s Cup grinders (age: 36 ± 2 y; body mass: 104 ± 1 kg; body fat 13 ± 2%) performed eight maximal 6 s sprints on an adjustable standing arm-crank ergometer fitted with an SRM powercrank. The protocol included crank lengths of 162, 199, 236
and 273 mm and crank-axle heights of 850, 950, 1050 and 1150 mm. Peak power, ground reaction forces (GRF) and joint angles were determined and compared for different crank lengths and crank-axle heights with repeated-measures ANOVA. Results: Peak power was significantly different between crank lengths (P=0.006), with 162 mm lower than all others (P<0.03). Optimal crank length was 12.3% of arm-span, or 241 ± 9 mm for
this cohort of athletes. Peak power was significantly less for the crank-axle height of 850 mm compared to 1150 mm (P=0.01). The optimal crank-axle height for peak power was between 50 and 60% of stature (950-1150 mm in this study). Hip flexion was greater at the lowest crank-axle height (850 mm) than at 1050 and 1150 mm (P<0.01), and the resultant GRF was also reduced compared to all other heights, indicating greater weight bearing by the upper body. Changes in crank length and crank-axle height influence performance during maximal standing arm-crank ergometry. These results, suggest that standard leg-cycle crank lengths are inappropriate for maximal arm-cranking performance. In addition, a crank-axle height
of <50% of stature, which is typically used in America’s Cup sailing, may attenuate performance.
History
School
Sport, Exercise and Health Sciences
Citation
NEVILLE, V. ... et al, 2010. Influence of crank length and crank-axle height on standing arm-crank (grinding) power. Medicine and Science in Sports and Exercise, 42 (2), pp. 381-387.