Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement
posted on 2013-03-25, 16:19authored byTobias K.H. Muller, Ping Cao, Stephanie Ewert, Jonas Wohlgemuth, Matthias Franzreb, Haiyang Liu, Thomas C. Willett, Eirini Theodosiou, Owen R.T. Thomas
An integrated approach to temperature-controlled chromatography, involving copolymer
modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR)
arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation
exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii)
amine capping; (iii) 4,4′-azobis(4-cyanovaleric acid) immobilization; and ‘graft from’
polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-
N,N′-methylenebisacrylamide). FT-IR, 1H NMR, gravimetry and chemical assays allowed
precise determination of the adsorbent’s copolymer composition and loading, and identified
the initial epoxy activation step as a critical determinant of ‘on-support’ copolymer loading,
and in turn, protein binding performance. In batch binding studies with lactoferrin,
thermoCEX’s binding affinity and maximum adsorption capacity rose smoothly with
temperature increase from 20 to 50 ºC. In temperature shifting chromatography experiments
employing thermoCEX in thermally-jacketed columns, 44 – 51% of the lactoferrin adsorbed
at 42 ºC could be desorbed under binding conditions by cooling the column to 22 ºC, but the
elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive
chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR
chromatography, a narrow discrete cooling zone (special assembly of copper blocks and
Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary
phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35
ºC using 8 successive movements of the cooling zone at a velocity of 0.1 mm/s; over half of
the recovered protein was eluted in the first peak in more concentrated form than in the feed.
Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the
velocities of the cooling zone and mobile phase were identified as the main parameters
affecting TCZR performance. In contrast to conventional systems, which rely on cooling the
3
whole column to effect elution and permit only batch-wise operation, TCZR chromatography
generates sharp concentrated elution peaks without tailing effects and appears ideally suited
for continuous operation.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Citation
MULLER, T.K.H. ... et al, 2013. Integrated system for temperature-controlled fast protein liquid chromatography comprising improved copolymer modified beaded agarose adsorbents and a travelling cooling zone reactor arrangement. Journal of Chromatography A, 1285, pp.97–109
NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Chromatography A. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published at: http://dx.doi.org/10.1016/j.chroma.2013.02.025